Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biomed Opt Express ; 13(10): 5261-5274, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36425641

ABSTRACT

In this article, we are presenting an original selective plane illumination fluorescence microscope dedicated to image "Organ-on-chip"-like biostructures in microfluidic chips. In order to be able to morphologically analyze volumetric samples in development at the cellular scale inside microfluidic chambers, the setup presents a compromise between relatively large field of view (∼ 200 µm) and moderate resolution (∼ 5 µm). The microscope is based on a simple design, built around the chip and its microfluidic environment to allow 3D imaging inside the chip. In particular, the sample remains horizontally avoiding to disturb the fluidics phenomena. The experimental setup, its optical characterization and the first volumetric images are reported.

2.
Data Brief ; 41: 107851, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35128006

ABSTRACT

Microencapsulation technologies have experienced much growth over the past decades and are commonly used for food, cosmetic, pharmaceutical and biomedical applications. Certain application fields impose stricter requirements on the polymer capsules. In many biomedical applications including bioencapsulation, cell therapy and drug delivery applications, capsules are required to have a controlled shape and size, as well as a defined mechanical stability and porosity. This data article reports the alginate capsule production using common centrifugal technology, which enables the production of microcapsules with highly viscous biopolymers. We describe the experimental data generated in a parametric study, where the main control parameters of the centrifugal encapsulation system (alginate viscosity, rotating speed, nozzle diameter, collecting distance) were varied. The geometric properties of the produced hydrogel capsules were analysed by microscope photography and image processing. The dataset presented here contains the experimental data, the raw capsule images, the analysis scripts, the analysed images, and tables with extracted geometric information. All extracted data was compiled into a table containing geometric properties of more than 50000 analysed capsules. These data allow (i) to reproduce quickly the encapsulation experiments and be able to choose in a straight-forward manner the combination of parameters needed in order to generate capsules with desired properties; (ii) to create more general phase diagrams of the centrifugal encapsulation technology which can be widely used for prediction and/or parameter selection; (iii) to analyse more thoroughly the sensitivity of capsule properties to given stages of the encapsulation process. The research article on these data [1] was published in the journal Colloids and Surfaces A: Physicochemical and Engineering Aspect, with the title: Three-dimensional phase diagram for the centrifugal Calcium-alginate microcapsules production technology.

3.
Biochem Biophys Res Commun ; 528(4): 650-657, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32513541

ABSTRACT

INTRODUCTION: The extension of islet transplantation to a wider number of type 1 diabetes patients is compromised by severe adverse events related to the immunosuppressant therapy required for allogenic islet transplantation. In this context, microencapsulation offers the prospects of immunosuppressive-free therapy by physically isolating islets from the immune system. However, current biomaterials need to be optimized to: improve biocompatibility, guaranty the maintenance of graft viability and functionality, and prevent fibrosis overgrowth around the capsule in vivo. Accumulating evidence suggest that mesenchymal stem cells (MSCs) and anchor points consisting of tripeptides arg-gly-asp (RGD) have cytoprotective effects on pancreatic islets. Here, we investigated the effect of supplementing reference M-rich alginate microcapsules with MSCs and RGD-G rich alginate on bioprocessing as well as on human pancreatic islets viability and functionality. METHODS: We characterized the microcapsules components, and then for the new microcapsule composite product: we analyzed the empty capsules biocompatibility and then investigated the benefits of MSCs and RGD-G rich alginate on viability and functionality on the encapsulated human pancreatic islets in vitro. We performed viability tests by confocal microscopy and glucose stimulated insulin secretion (GSIS) test in vitro to assess the functionality of naked and encapsulated islets. RESULTS: Encapsulation in reference M-rich alginate capsules induced a reduction in viability and functionality compared to naked islets. This side-effect of encapsulation was in part counteracted by the presence of MSCs but the restoration was complete with the combination of both MSCs and the RGD-G rich alginate. CONCLUSIONS: The present findings show that bioprocessing a favorable composite environment inside the M-rich alginate capsule with both MSCs and RGD-G rich alginate improves human islets survival and functionality in vitro.


Subject(s)
Cell Survival/drug effects , Cells, Immobilized/cytology , Islets of Langerhans/cytology , Mesenchymal Stem Cells/cytology , Oligopeptides/pharmacology , Adult , Alginates/chemistry , Cells, Cultured , Cells, Immobilized/drug effects , Humans , Islets of Langerhans/drug effects , Mesenchymal Stem Cells/drug effects , Middle Aged
4.
Nucleic Acids Res ; 46(12): e70, 2018 07 06.
Article in English | MEDLINE | ID: mdl-29394376

ABSTRACT

Organoid cultures in 3D matrices are relevant models to mimic the complex in vivo environment that supports cell physiological and pathological behaviors. For instance, 3D epithelial organoids recapitulate numerous features of glandular tissues including the development of fully differentiated acini that maintain apico-basal polarity with hollow lumen. Effective genetic engineering in organoids would bring new insights in organogenesis and carcinogenesis. However, direct 3D transfection on already formed organoids remains challenging. One limitation is that organoids are embedded in extracellular matrix and grow into compact structures that hinder transfection using traditional techniques. To address this issue, we developed an innovative approach for transgene expression in 3D organoids by combining single-cell encapsulation in Matrigel microbeads using a microfluidic device and electroporation. We demonstrate that direct electroporation of encapsulated organoids reaches up to 80% of transfection efficiency. Using this technique and a morphological read-out that recapitulate the different stages of tumor development, we further validate the role of p63 and PTEN as key genes in acinar development in breast and prostate tissues. We believe that the combination of controlled organoid generation and efficient 3D transfection developed here opens new perspectives for flow-based high-throughput genetic screening and functional genomic applications.


Subject(s)
Collagen , Laminin , Organoids/cytology , Proteoglycans , Transfection/methods , Breast/growth & development , Cell Line , Cell Line, Tumor , Drug Combinations , Electroporation , Female , Humans , Lab-On-A-Chip Devices , Male , Microspheres , PTEN Phosphohydrolase/genetics , Prostate/growth & development , RNA Interference , RNA, Small Interfering , Spheroids, Cellular/cytology , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics
5.
Lab Chip ; 13(22): 4476-85, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24085107

ABSTRACT

Current efforts in nanofluidics aimed at detecting scarce molecules or particles are focused mainly on the development of electrokinetic-based devices. However, these techniques require either integrated or external electrodes, and a potential drop applied across a carrier fluid. One challenge is to develop a new generation of electroless passive devices involving a simple technological process and packaging without embedded electrodes for micro- and nanoparticles enrichment with a view to applications in biology such as the detection of viral agents or cancers biomarkers. This paper presents an innovative technique for particles handling and enrichment based exclusively on a pressure-driven silicon bypass nanofluidic device. The device is fabricated by standard silicon micro-nanofabrication technology. The concentration operation was demonstrated and quantified according to two different actuation modes, which can also be combined to enhance the concentration factor further. The first, "symmetrical" mode involves a symmetric cross-flow effect that concentrates nanoparticles in a very small volume in a very local point of the device. The second mode, "asymmetrical" mode advantageously generates a streaming potential, giving rise to an Electroless Electropreconcentration (EL-EP). The concentration process can be maintained for several hours and concentration factors as high as ~200 have been obtained when both symmetrical and asymmetrical modes are coupled. Proof of concept for concentrating E. coli bacteria by the manual actuation of the EL-EP device is also demonstrated in this paper. Experiments demonstrate more than a 50-fold increase in the concentration of E. coli bacteria in only ~40 s.


Subject(s)
Escherichia coli/isolation & purification , Microfluidic Analytical Techniques/instrumentation , Nanoparticles/chemistry , Nanotechnology/instrumentation , Nanotechnology/methods , Electrodes , Silicon/chemistry
6.
Biosens Bioelectron ; 36(1): 230-5, 2012.
Article in English | MEDLINE | ID: mdl-22565093

ABSTRACT

Biological environmental monitoring (BEM) is a growing field of research which challenges both microfluidics and system automation. The aim is to develop a transportable system with analysis throughput which satisfies the requirements: (i) fully autonomous, (ii) complete protocol integration from sample collection to final analysis, (iii) detection of diluted molecules or biological species in a large real life environmental sample volume, (iv) robustness and (v) flexibility and versatility. This paper discusses all these specifications in order to define an original fluidic architecture based on three connected modules, a sampling module, a sample preparation module and a detection module. The sample preparation module highly concentrates on the pathogens present in a few mL samples of complex and unknown solutions and purifies the pathogens' nucleic acids into a few µL of a controlled buffer. To do so, a two-step concentration protocol based on magnetic beads is automated in a reusable macro-to-micro fluidic system. The detection module is a PCR based miniaturized platform using digital microfluidics, where reactions are performed in 64 nL droplets handled by electrowetting on dielectric (EWOD) actuation. The design and manufacture of the two modules are reported as well as their respective performances. To demonstrate the integration of the complete protocol in the same system, first results of pathogen detection are shown.


Subject(s)
DNA/analysis , Environmental Monitoring/methods , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Adenoviruses, Human/isolation & purification , Bacillus subtilis/isolation & purification , Baculoviridae/isolation & purification , Escherichia coli/isolation & purification , Humans , Polymerase Chain Reaction/methods , Sensitivity and Specificity , Streptococcus pneumoniae/isolation & purification
7.
Lab Chip ; 8(3): 456-61, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18305865

ABSTRACT

Despite the recent interest in droplet-based microfluidics using electrowetting-on-dielectric (EWOD), fundamental understanding of the fluid dynamics remains limited to two-dimensional (2D) reduction of the Navier-Stokes equation. Experimental data are in dire need to verify the predictions and advance the field. We report an investigation of the flow inside droplets actuated by EWOD in air using micro particle image velocimetry (micro-PIV). Using the continuity equation, we reconstruct the 3D velocity field from the 2D PIV experimental data. We present some fundamental findings and build valuable insights that will help design sophisticated EWOD microfluidic devices. For example, the results confirm that efficient mixing in a droplet may be achieved by moving the droplet along an irreversible pattern that breaks the symmetry of the two circulating inner flows.


Subject(s)
Microfluidics/methods
8.
Lab Chip ; 7(3): 396-8, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17330174

ABSTRACT

We report for the first time a laminar high-performance continuous micromixing process of two fluids over a length of 200 microns in under 10 milliseconds achieved by an optimization of the control parameters amplitude and frequency in the mixing device denoted as 'Shear Superposition Micromixer'. We improve mixing time by approximately 5 orders of magnitude over diffusion-limited mixing. The data indicate that rapid mixing is a result of the combined action of Taylor-Aris dispersion in the main and secondary microchannels and unsteady vortex motion that occurs at finite Reynolds number, which occurs above a threshold amplitude and frequency. The mixing performance is quantified using micron-resolution particle image velocimetry (micro-PIV) and computational fluid dynamics (CFD) simulations.


Subject(s)
Microfluidics/instrumentation , Equipment Design
9.
Phys Rev Lett ; 95(23): 236002, 2005 Dec 02.
Article in English | MEDLINE | ID: mdl-16384321

ABSTRACT

The impact of the convective fluid motion induced by the electric fields on the dielectrophoretic manipulation of particles is investigated theoretically and experimentally. By means of a simplified model a channel with a periodic array of microelectrodes we show that electroconvective flows induce the formation of traps for particles, providing a dynamical mechanism to control microparticles in such devices. We demonstrate experimentally the theoretically predicted dynamical phenomena.

10.
Philos Trans A Math Phys Eng Sci ; 362(1818): 1001-18, 2004 May 15.
Article in English | MEDLINE | ID: mdl-15306481

ABSTRACT

In this paper, we analyse mixing in an active chaotic advection micromixer. The micromixer consists of a main rectangular channel and three cross-stream secondary channels that provide ability for time-dependent actuation of the flow stream in the direction orthogonal to the main stream. Three-dimensional motion in the mixer is studied. Numerical simulations and modelling of the flow are pursued in order to understand the experiments. It is shown that for some values of parameters a simple model can be derived that clearly represents the flow nature. Particle image velocimetry measurements of the flow are compared with numerical simulations and the analytical model. A measure for mixing, the mixing variance coefficient (MVC), is analysed. It is shown that mixing is substantially improved with multiple side channels with oscillatory flows, whose frequencies are increasing downstream. The optimization of MVC results for single side-channel mixing is presented. It is shown that dependence of MVC on frequency is not monotone, and a local minimum is found. Residence time distributions derived from the analytical model are analysed. It is shown that, while the average Lagrangian velocity profile is flattened over the steady flow, Taylor-dispersion effects are still present for the current micromixer configuration.


Subject(s)
Complex Mixtures/chemistry , Microchemistry/methods , Microfluidics/methods , Models, Chemical , Nanotechnology/methods , Oscillometry/methods , Computer Simulation , Equipment Design , Equipment Failure Analysis , Motion , Periodicity , Shear Strength , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...