Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Eur J Med Chem ; 103: 429-37, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26383127

ABSTRACT

New analogues (3a-l) of the previously described α4ß2 selective ligand 3-(6-halopyridin-3-yl)-3,6-diazabicyclo[3.1.1]heptanes (2a,b) have been synthesized and their binding activity for neuronal acetylcholine receptor subtypes α4ß2 and α7 were assayed. Six of these compounds (3a,b,c,j,k and l) showed high affinity and selectivity for α4ß2 receptors. The phenylpyridyl-diazabicycloheptane 3c displayed Ki value of 11.17 pM for α4ß2, in line with that of the halogenated homologues 3a,b, although it was characterized by an improved selectivity (Ki = 17 µM for α7 receptors). The influence of substitutions on the phenylpyridyl moiety on binding at both α4ß2 and α7 receptors has been examined through the Topliss decision tree analysis. Substitution with electron-donating groups (as CH3 and OCH3) resulted in a good affinity for α4ß2 receptors and substantially no affinity for α7. Amongst all the tested phenyl-substituted compounds, the p-NO2-phenyl substituted analogue 3j exhibited the highest α4ß2 affinity, with Ki value comparable to that of 3c. Intrinsic α4ß2 receptor mediated activity in [(3)H]-DA release assay was showed by compound 3a as well as by the reference analogue 2a, whereas phenyl substituted derivative 3c exhibited α4ß2 antagonist activity.


Subject(s)
Azabicyclo Compounds/metabolism , Azabicyclo Compounds/pharmacology , Drug Design , Receptors, Nicotinic/metabolism , Animals , Azabicyclo Compounds/chemistry , Binding Sites/drug effects , Dose-Response Relationship, Drug , Humans , Molecular Structure , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL