Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 23(17): 5527-38, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26252963

ABSTRACT

Here we report the investigation of diazabicycloalkane cores as potential new scaffolds for the development of novel analogues of the previously reported diazatricyclodecane selective delta (δ) opioid agonists, as conformationally constrained homologues of the reference δ agonist (+)-4-[(αR)-α((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80). In particular, we have simplified the diazatricyclodecane motif of δ opioid agonist prototype 1a with bridged bicyclic cores. 3,6-diazabicyclo[3.1.1]heptane, 3,8-diazabicyclo[3.2.1]octane, 3,9-diazabicyclo[3.3.1]nonane, 3,9-diazabicyclo[4.2.1]nonane, and 3,10-diazabicyclo[4.3.1]decane were adopted as core motifs of the novel derivatives. The compounds were synthesized and biologically assayed as racemic (3-5) or diastereoisomeric (6,7) mixtures. All the novel compounds 3-7 showed δ agonism behaviour and remarkable affinity to δ receptors. Amongst the novel derivatives, 3,8-diazabicyclo[3.2.1]octane based compound 4 evidenced improved δ affinity and selectivity relative to SNC80.


Subject(s)
Alkanes/chemistry , Receptors, Opioid, delta/agonists , Receptors, Opioid, mu/agonists , Molecular Structure , Structure-Activity Relationship
2.
Eur J Med Chem ; 62: 256-69, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23357307

ABSTRACT

In spite of rimonabant's withdrawal from the European market due to its adverse effects, interest in the development of drugs based on CB1 antagonists is revamping on the basis of the peculiar properties of this class of compounds. In particular, new strategies have been proposed for the treatment of obesity and/or related risk factors through CB1 antagonists, i.e. by the development of selectively peripherally acting agents or by the identification of neutral CB1 antagonists. New compounds based on the lead CB1 antagonist/inverse agonist rimonabant have been synthesized with focus on obtaining neutral CB1 antagonists. Amongst the new derivatives described in this paper, the mixture of the two enantiomers (±)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-3-(2-cyclohexyl-1-hydroxyethyl)-4-methyl-1H-pyrazole ((±)-5), and compound 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-3-[(Z)-2-cyclohexyl-1-fluorovinyl]-4-methyl-1H-pyrazole ((Z)-6), showed interesting pharmacological profiles. According to the preliminary pharmacological evaluation, these novel pyrazole derivatives showed in fact both neutral CB1 antagonism behaviour and significant in vivo activity towards food intake.


Subject(s)
Eating/drug effects , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Animals , Dose-Response Relationship, Drug , Male , Mice , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Structure-Activity Relationship
3.
Cent Nerv Syst Agents Med Chem ; 12(4): 254-76, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22931442

ABSTRACT

The synthesis of three series of novel 4-alkyl-5-(5'-chlorothiophen-2'-yl)-pyrazole-3-carbamoyl analogues of rimonabant with affinity for the CB1 cannabinoid receptor subtype is reported. Amongst the novel derivatives, compounds 21j, 22a, 22c, and 22f showed affinity values expressed as Ki ranging from 5.5 to 9.0 nM. Derivative 23e revealed a good CB1 affinity (K(i) = 11.7 nM) and the highest CB1 selectivity of the whole series (K(i)CB2/K(i)CB1 = 384.6). These new compounds appeared to be able to pass the blood brain barrier and to counteract the activity of cannabinoid agonist. According to the results of mice vas deferens assays, as in the case of rimonabant, derivatives 21a, 22a, and 22b showed inverse agonist activity. In contrast, as a preliminary result to be confirmed, compound 23a exhibited neutral antagonist profile. According to the data obtained through an acute animal model, selected compounds 21a, 22a, and 23a evidenced the capability to significantly reduce food intake. At specific conditions, the effect of the novel compounds were higher than that induced by rimonabant. Amongst the novel CB1 antagonist compounds, 23a may represent a useful candidate agent for the treatment of obesity and its metabolic complications, with reduced side effects relative to those instead observed with rimonabant.


Subject(s)
Appetite Depressants/chemical synthesis , Cannabinoid Receptor Antagonists/chemical synthesis , Eating/drug effects , Piperidines/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Animals , Appetite Depressants/pharmacology , Blood-Brain Barrier , Body Temperature/drug effects , Cannabinoid Receptor Antagonists/pharmacology , Drug Evaluation, Preclinical , Gastrointestinal Transit/drug effects , Male , Mice , Molecular Structure , Obesity/drug therapy , Pyrazoles/chemistry , Receptor, Cannabinoid, CB1/agonists , Rimonabant , Structure-Activity Relationship , Vas Deferens/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...