Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 344(6191): 1486-9, 2014 Jun 27.
Article in English | MEDLINE | ID: mdl-24970079

ABSTRACT

The Heisenberg uncertainty principle sets a lower bound on the noise in a force measurement based on continuously detecting a mechanical oscillator's position. This bound, the standard quantum limit, can be reached when the oscillator subjected to the force is unperturbed by its environment and when measurement imprecision from photon shot noise is balanced against disturbance from measurement back-action. We applied an external force to the center-of-mass motion of an ultracold atom cloud in a high-finesse optical cavity and measured the resulting motion optically. When the driving force is resonant with the cloud's oscillation frequency, we achieve a sensitivity that is a factor of 4 above the standard quantum limit and consistent with theoretical predictions given the atoms' residual thermal disturbance and the photodetection quantum efficiency.

2.
Phys Rev Lett ; 110(15): 153001, 2013 Apr 12.
Article in English | MEDLINE | ID: mdl-25167258

ABSTRACT

We create an ultracold-atom-based cavity optomechanical system in which the center-of-mass modes of motion of as many as six distinguishable atomic ensembles are prepared and optically detected near their ground states. We demonstrate that the collective motional state of one atomic ensemble can be selectively addressed while preserving neighboring ensembles near their ground states to better than 95% per excitation quantum. We also show that our system offers nanometer-scale spatial resolution of each atomic ensemble via optomechanical imaging. This technique enables the in situ parallel sensing of potential landscapes, a capability relevant to active research areas of atomic physics and force-field detection in optomechanics.

3.
Nature ; 488(7412): 476-80, 2012 Aug 23.
Article in English | MEDLINE | ID: mdl-22895194

ABSTRACT

Optomechanical systems, in which light drives and is affected by the motion of a massive object, will comprise a new framework for nonlinear quantum optics, with applications ranging from the storage and transduction of quantum information to enhanced detection sensitivity in gravitational wave detectors. However, quantum optical effects in optomechanical systems have remained obscure, because their detection requires the object's motion to be dominated by vacuum fluctuations in the optical radiation pressure; so far, direct observations have been stymied by technical and thermal noise. Here we report an implementation of cavity optomechanics using ultracold atoms in which the collective atomic motion is dominantly driven by quantum fluctuations in radiation pressure. The back-action of this motion onto the cavity light field produces ponderomotive squeezing. We detect this quantum phenomenon by measuring sub-shot-noise optical squeezing. Furthermore, the system acts as a low-power, high-gain, nonlinear parametric amplifier for optical fluctuations, demonstrating a gain of 20 dB with a pump corresponding to an average of only seven intracavity photons. These findings may pave the way for low-power quantum optical devices, surpassing quantum limits on position and force sensing, and the control and measurement of motion in quantum gases.

4.
Phys Rev Lett ; 108(13): 133601, 2012 Mar 30.
Article in English | MEDLINE | ID: mdl-22540699

ABSTRACT

We directly measure the quantized collective motion of a gas of thousands of ultracold atoms, coupled to light in a high-finesse optical cavity. We detect strong asymmetries, as high as 3:1, in the intensity of light scattered into low- and high-energy motional sidebands. Owing to high cavity-atom cooperativity, the optical output of the cavity contains a spectroscopic record of the energy exchanged between light and motion, directly quantifying the heat deposited by a quantum position measurement's backaction. Such backaction selectively causes the phonon occupation of the observed collective modes to increase with the measurement rate. These results, in addition to providing a method for calibrating the motion of low-occupation mechanical systems, offer new possibilities for investigating collective modes of degenerate gases and for diagnosing optomechanical measurement backaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...