Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
mSystems ; 5(1)2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31937676

ABSTRACT

Ammonia-oxidizing microorganisms perform the first step of nitrification, the oxidation of ammonia to nitrite. The bacterium Nitrosomonas europaea is the best-characterized ammonia oxidizer to date. Exposure to hypoxic conditions has a profound effect on the physiology of N. europaea, e.g., by inducing nitrifier denitrification, resulting in increased nitric and nitrous oxide production. This metabolic shift is of major significance in agricultural soils, as it contributes to fertilizer loss and global climate change. Previous studies investigating the effect of oxygen limitation on N. europaea have focused on the transcriptional regulation of genes involved in nitrification and nitrifier denitrification. Here, we combine steady-state cultivation with whole-genome transcriptomics to investigate the overall effect of oxygen limitation on N. europaea Under oxygen-limited conditions, growth yield was reduced and ammonia-to-nitrite conversion was not stoichiometric, suggesting the production of nitrogenous gases. However, the transcription of the principal nitric oxide reductase (cNOR) did not change significantly during oxygen-limited growth, while the transcription of the nitrite reductase-encoding gene (nirK) was significantly lower. In contrast, both heme-copper-containing cytochrome c oxidases encoded by N. europaea were upregulated during oxygen-limited growth. Particularly striking was the significant increase in transcription of the B-type heme-copper oxidase, proposed to function as a nitric oxide reductase (sNOR) in ammonia-oxidizing bacteria. In the context of previous physiological studies, as well as the evolutionary placement of N. europaea's sNOR with regard to other heme-copper oxidases, these results suggest sNOR may function as a high-affinity terminal oxidase in N. europaea and other ammonia-oxidizing bacteria.IMPORTANCE Nitrification is a ubiquitous microbially mediated process in the environment and an essential process in engineered systems such as wastewater and drinking water treatment plants. However, nitrification also contributes to fertilizer loss from agricultural environments, increasing the eutrophication of downstream aquatic ecosystems, and produces the greenhouse gas nitrous oxide. As ammonia-oxidizing bacteria are the most dominant ammonia-oxidizing microbes in fertilized agricultural soils, understanding their responses to a variety of environmental conditions is essential for curbing the negative environmental effects of nitrification. Notably, oxygen limitation has been reported to significantly increase nitric oxide and nitrous oxide production during nitrification. Here, we investigate the physiology of the best-characterized ammonia-oxidizing bacterium, Nitrosomonas europaea, growing under oxygen-limited conditions.

2.
mSystems ; 3(3)2018.
Article in English | MEDLINE | ID: mdl-29577088

ABSTRACT

Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, emits nitrogen (N) oxide gases (NO, NO2, and N2O), which are potentially hazardous compounds that contribute to global warming. To better understand the dynamics of nitrification-derived N oxide production, we conducted culturing experiments and used an integrative genome-scale, constraint-based approach to model N oxide gas sources and sinks during complete nitrification in an aerobic coculture of two model nitrifying bacteria, the ammonia-oxidizing bacterium Nitrosomonas europaea and the nitrite-oxidizing bacterium Nitrobacter winogradskyi. The model includes biotic genome-scale metabolic models (iFC578 and iFC579) for each nitrifier and abiotic N oxide reactions. Modeling suggested both biotic and abiotic reactions are important sources and sinks of N oxides, particularly under microaerobic conditions predicted to occur in coculture. In particular, integrative modeling suggested that previous models might have underestimated gross NO production during nitrification due to not taking into account its rapid oxidation in both aqueous and gas phases. The integrative model may be found at https://github.com/chaplenf/microBiome-v2.1. IMPORTANCE Modern agriculture is sustained by application of inorganic nitrogen (N) fertilizer in the form of ammonium (NH4+). Up to 60% of NH4+-based fertilizer can be lost through leaching of nitrifier-derived nitrate (NO3-), and through the emission of N oxide gases (i.e., nitric oxide [NO], N dioxide [NO2], and nitrous oxide [N2O] gases), the latter being a potent greenhouse gas. Our approach to modeling of nitrification suggests that both biotic and abiotic mechanisms function as important sources and sinks of N oxides during microaerobic conditions and that previous models might have underestimated gross NO production during nitrification.

3.
Appl Microbiol Biotechnol ; 102(4): 1859-1867, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29297101

ABSTRACT

Ethene (ETH)-grown inocula of Nocardioides JS614 grow on vinyl chloride (VC), vinyl fluoride (VF), or vinyl bromide (VB) as the sole carbon and energy source, with faster growth rates and higher cell yields on VC and VF than on VB. However, whereas acetate-grown inocula of JS614 grow on VC and VF after a lag period, growth on VB did not occur unless supplemental ethene oxide (EtO) was present in the medium. Despite inferior growth on VB, the maximum rate of VB consumption by ETH-grown cells was ~ 50% greater than the rates of VC and VF consumption, but Br- release during VB consumption was non-stoichiometric with VB consumption (~ 66%) compared to 100% release of Cl- and F- during VC and VF consumption. Evidence was obtained for VB turnover-dependent toxicity of cell metabolism in JS614 with both acetate-dependent respiration and growth being significantly reduced by VB turnover, but no VC or VF turnover-dependent toxicity of growth was detected. Reduced growth rate and cell yield of JS614 on VB probably resulted from a combination of inefficient metabolic processing of the highly unstable VB epoxide (t0.5 = 45 s), accompanied by growth inhibitory effects of VB metabolites on acetate-dependent metabolism. The exact role(s) of EtO in promoting growth of alkene repressed JS614 on VB remains unresolved, with evidence of EtO inducing epoxide consuming activity prior to an increase in alkene oxidizing activity and supplementing reductant supply when VB is the growth substrate.


Subject(s)
Actinobacteria/growth & development , Actinobacteria/metabolism , Vinyl Chloride/metabolism , Vinyl Compounds/metabolism , Carbon/metabolism , Energy Metabolism
4.
FEMS Microbiol Ecol ; 94(3)2018 03 01.
Article in English | MEDLINE | ID: mdl-29360963

ABSTRACT

The factors influencing how soil nitrite (NO2-)- and ammonia (NH3)-oxidizing activities remain coupled are unknown. A short-term study (<48 h) was conducted to examine the dynamics of NO2--oxidizing activity and the accumulation of NO2- in three Oregon soils stimulated by the addition of 1 mM NH4+ in soil slurry. Nitrite initially accumulated in all three soils; its subsequent decline or slowing of the accumulation of the NO2- pool by 24 h was accompanied by an increase in the size of the nitrate (NO3-) pool, indicating a change in NO2- oxidation kinetics. Bacterial protein synthesis inhibitors prevented the NO2- pool decline, resulting in a larger accumulation in all three soils. Although no significant increases in NO2--oxidizing bacteria nxrA (Nitrobacter) and nxrB (Nitrospira) gene abundances were detected over the time course, maximum NO2- consumption rates increased 2-fold in the treatment without antibiotics compared to no change with antibiotics. No changes were observed in the apparent half saturation constant (Km) values for NO2- consumption. This study demonstrates phenotypic flexibility among soil NO2- oxidizers, which can undergo protein synthesis-dependent increases in NO2- consumption rates to match NH3 oxidation rates and recouple nitrification.


Subject(s)
Bacteria/metabolism , Nitrites/metabolism , Ammonia/metabolism , Nitrification , Nitrites/analysis , Nitrobacter/metabolism , Oregon , Oxidation-Reduction , Soil/chemistry , Soil Microbiology
5.
Appl Environ Microbiol ; 83(22)2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28887424

ABSTRACT

The genomes of many bacteria that participate in nitrogen cycling through the process of nitrification contain putative genes associated with acyl-homoserine lactone (AHL) quorum sensing (QS). AHL QS or bacterial cell-cell signaling is a method of bacterial communication and gene regulation and may be involved in nitrogen oxide fluxes or other important phenotypes in nitrifying bacteria. Here, we carried out a broad survey of AHL production in nitrifying bacteria in three steps. First, we analyzed the evolutionary history of AHL synthase and AHL receptor homologs in sequenced genomes and metagenomes of nitrifying bacteria to identify AHL synthase homologs in ammonia-oxidizing bacteria (AOB) of the genus Nitrosospira and nitrite-oxidizing bacteria (NOB) of the genera Nitrococcus, Nitrobacter, and Nitrospira Next, we screened cultures of both AOB and NOB with uncharacterized AHL synthase genes and AHL synthase-negative nitrifiers by a bioassay. Our results suggest that an AHL synthase gene is required for, but does not guarantee, cell density-dependent AHL production under the conditions tested. Finally, we utilized mass spectrometry to identify the AHLs produced by the AOB Nitrosospira multiformis and Nitrosospira briensis and the NOB Nitrobacter vulgaris and Nitrospira moscoviensis as N-decanoyl-l-homoserine lactone (C10-HSL), N-3-hydroxy-tetradecanoyl-l-homoserine lactone (3-OH-C14-HSL), a monounsaturated AHL (C10:1-HSL), and N-octanoyl-l-homoserine lactone (C8-HSL), respectively. Our survey expands the list of AHL-producing nitrifiers to include a representative of Nitrospira lineage II and suggests that AHL production is widespread in nitrifying bacteria.IMPORTANCE Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite by nitrifying microorganisms, plays an important role in environmental nitrogen cycling from agricultural fertilization to wastewater treatment. The genomes of many nitrifying bacteria contain genes associated with bacterial cell-cell signaling or quorum sensing (QS). QS is a method of bacterial communication and gene regulation that is well studied in bacterial pathogens, but less is known about QS in environmental systems. Our previous work suggested that QS might be involved in the regulation of nitrogen oxide gas production during nitrite metabolism. This study characterized putative QS signals produced by different genera and species of nitrifiers. Our work lays the foundation for future experiments investigating communication between nitrifying bacteria, the purpose of QS in these microorganisms, and the manipulation of QS during nitrification.


Subject(s)
4-Butyrolactone/analogs & derivatives , Bacterial Proteins/genetics , Nitrobacter/physiology , Nitrosomonadaceae/physiology , Quorum Sensing , 4-Butyrolactone/metabolism , Bacterial Proteins/metabolism , Nitrification , Nitrobacter/classification , Nitrobacter/genetics , Nitrobacter/isolation & purification , Nitrosomonadaceae/classification , Nitrosomonadaceae/genetics , Nitrosomonadaceae/isolation & purification , Phylogeny
6.
Genome Announc ; 5(18)2017 May 04.
Article in English | MEDLINE | ID: mdl-28473388

ABSTRACT

Here, we present the 3.9-Mb draft genome sequence of Nitrobacter vulgaris strain Ab1, which was isolated from a sewage system in Hamburg, Germany. The analysis of its genome sequence will contribute to our knowledge of nitrite-oxidizing bacteria and acyl-homoserine lactone quorum sensing in nitrifying bacteria.

7.
ISME J ; 11(4): 896-908, 2017 04.
Article in English | MEDLINE | ID: mdl-27996979

ABSTRACT

Soil nitrification potential (NP) activities of ammonia-oxidizing archaea and bacteria (AOA and AOB, respectively) were evaluated across a temperature gradient (4-42 °C) imposed upon eight soils from four different sites in Oregon and modeled with both the macromolecular rate theory and the square root growth models to quantify the thermodynamic responses. There were significant differences in response by the dominant AOA and AOB contributing to the NPs. The optimal temperatures (Topt) for AOA- and AOB-supported NPs were significantly different (P<0.001), with AOA having Topt>12 °C greater than AOB. The change in heat capacity associated with the temperature dependence of nitrification (ΔCP‡) was correlated with Topt across the eight soils, and the ΔCP‡ of AOB activity was significantly more negative than that of AOA activity (P<0.01). Model results predicted, and confirmatory experiments showed, a significantly lower minimum temperature (Tmin) and different, albeit very similar, maximum temperature (Tmax) values for AOB than for AOA activity. The results also suggested that there may be different forms of AOA AMO that are active over different temperature ranges with different Tmin, but no evidence of multiple Tmin values within the AOB. Fundamental differences in temperature-influenced properties of nitrification driven by AOA and AOB provides support for the idea that the biochemical processes associated with NH3 oxidation in AOA and AOB differ thermodynamically from each other, and that also might account for the difficulties encountered in attempting to model the response of nitrification to temperature change in soil environments.


Subject(s)
Ammonia/metabolism , Archaea/metabolism , Bacteria/metabolism , Soil Microbiology , Soil/chemistry , Ammonia/chemistry , Archaea/classification , Bacteria/classification , Nitrification , Oregon , Oxidation-Reduction , Temperature
8.
mBio ; 7(5)2016 10 25.
Article in English | MEDLINE | ID: mdl-27795404

ABSTRACT

Quorum sensing (QS) is a widespread process in bacteria used to coordinate gene expression with cell density, diffusion dynamics, and spatial distribution through the production of diffusible chemical signals. To date, most studies on QS have focused on model bacteria that are amenable to genetic manipulation and capable of high growth rates, but many environmentally important bacteria have been overlooked. For example, representatives of proteobacteria that participate in nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, produce QS signals called acyl-homoserine lactones (AHLs). Nitrification emits nitrogen oxide gases (NO, NO2, and N2O), which are potentially hazardous compounds that contribute to global warming. Despite considerable interest in nitrification, the purpose of QS in the physiology/ecology of nitrifying bacteria is poorly understood. Through a quorum quenching approach, we investigated the role of QS in a well-studied AHL-producing nitrite oxidizer, Nitrobacter winogradskyi We added a recombinant AiiA lactonase to N. winogradskyi cultures to degrade AHLs to prevent their accumulation and to induce a QS-negative phenotype and then used mRNA sequencing (mRNA-Seq) to identify putative QS-controlled genes. Our transcriptome analysis showed that expression of nirK and nirK cluster genes (ncgABC) increased up to 19.9-fold under QS-proficient conditions (minus active lactonase). These data led to us to query if QS influenced nitrogen oxide gas fluxes in N. winogradskyi Production and consumption of NOx increased and production of N2O decreased under QS-proficient conditions. Quorum quenching transcriptome approaches have broad potential to identify QS-controlled genes and phenotypes in organisms that are not genetically tractable. IMPORTANCE: Bacterial cell-cell signaling, or quorum sensing (QS), is a method of bacterial communication and gene regulation that is well studied in bacteria. However, little is known about the purpose of QS in many environmentally important bacteria. Here, we demonstrate quorum quenching coupled with mRNA-Seq to identify QS-controlled genes and phenotypes in Nitrobacter winogradskyi, a nitrite-oxidizing bacterium. Nitrite oxidizers play an important role in the nitrogen cycle though their participation in nitrification, the aerobic oxidation of ammonia to nitrate via nitrite. Our quorum quenching approach revealed that QS influences production and consumption of environmentally important nitrogen oxide gases (NO, NO2, and N2O) in N. winogradskyi This study demonstrated a novel technique for studying QS in difficult-to-work-with microorganisms and showed that nitrite oxidizers might also contribute to nitrification-dependent production of nitrogen oxide gases that contribute to global warming.


Subject(s)
Nitrification , Nitrobacter/enzymology , Nitrobacter/physiology , Nitrogen Oxides/metabolism , Quorum Sensing , Acyl-Butyrolactones/metabolism , Aerobiosis , Biotransformation , Gene Expression Profiling , Sequence Analysis, RNA
9.
Stand Genomic Sci ; 11: 46, 2016.
Article in English | MEDLINE | ID: mdl-27471578

ABSTRACT

Nitrosospira briensis C-128 is an ammonia-oxidizing bacterium isolated from an acid agricultural soil. N. briensis C-128 was sequenced with PacBio RS technologies at the DOE-Joint Genome Institute through their Community Science Program (2010). The high-quality finished genome contains one chromosome of 3.21 Mb and no plasmids. We identified 3073 gene models, 3018 of which are protein coding. The two-way average nucleotide identity between the chromosomes of Nitrosospira multiformis ATCC 25196 and Nitrosospira briensis C-128 was found to be 77.2 %. Multiple copies of modules encoding chemolithotrophic metabolism were identified in their genomic context. The gene inventory supports chemolithotrophic metabolism with implications for function in soil environments.

10.
Appl Environ Microbiol ; 82(11): 3310-3318, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27016565

ABSTRACT

UNLABELLED: Nitrosomonas europaea is a chemolithoautotrophic bacterium that oxidizes ammonia (NH3) to obtain energy for growth on carbon dioxide (CO2) and can also produce nitrous oxide (N2O), a greenhouse gas. We interrogated the growth, physiological, and transcriptome responses of N. europaea to conditions of replete (>5.2 mM) and limited inorganic carbon (IC) provided by either 1.0 mM or 0.2 mM sodium carbonate (Na2CO3) supplemented with atmospheric CO2 IC-limited cultures oxidized 25 to 58% of available NH3 to nitrite, depending on the dilution rate and Na2CO3 concentration. IC limitation resulted in a 2.3-fold increase in cellular maintenance energy requirements compared to those for NH3-limited cultures. Rates of N2O production increased 2.5- and 6.3-fold under the two IC-limited conditions, increasing the percentage of oxidized NH3-N that was transformed to N2O-N from 0.5% (replete) up to 4.4% (0.2 mM Na2CO3). Transcriptome analysis showed differential expression (P ≤ 0.05) of 488 genes (20% of inventory) between replete and IC-limited conditions, but few differences were detected between the two IC-limiting treatments. IC-limited conditions resulted in a decreased expression of ammonium/ammonia transporter and ammonia monooxygenase subunits and increased the expression of genes involved in C1 metabolism, including the genes for RuBisCO (cbb gene cluster), carbonic anhydrase, folate-linked metabolism of C1 moieties, and putative C salvage due to oxygenase activity of RuBisCO. Increased expression of nitrite reductase (gene cluster NE0924 to NE0927) correlated with increased production of N2O. Together, these data suggest that N. europaea adapts physiologically during IC-limited steady-state growth, which leads to the uncoupling of NH3 oxidation from growth and increased N2O production. IMPORTANCE: Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, is an important process in the global nitrogen cycle. This process is generally dependent on ammonia-oxidizing microorganisms and nitrite-oxidizing bacteria. Most nitrifiers are chemolithoautotrophs that fix inorganic carbon (CO2) for growth. Here, we investigate how inorganic carbon limitation modifies the physiology and transcriptome of Nitrosomonas europaea, a model ammonia-oxidizing bacterium, and report on increased production of N2O, a potent greenhouse gas. This study, along with previous work, suggests that inorganic carbon limitation may be an important factor in controlling N2O emissions from nitrification in soils and wastewater treatment.


Subject(s)
Ammonia/metabolism , Carbon Dioxide/metabolism , Carbonates/metabolism , Energy Metabolism , Nitrosomonas europaea/metabolism , Nitrous Oxide/metabolism , Adaptation, Physiological , Aerobiosis , Gene Expression Profiling , Nitrosomonas europaea/genetics , Nitrosomonas europaea/growth & development
11.
Appl Environ Microbiol ; 81(17): 5917-26, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26092466

ABSTRACT

Nitrobacter winogradskyi is a chemolithotrophic bacterium that plays a role in the nitrogen cycle by oxidizing nitrite to nitrate. Here, we demonstrate a functional N-acyl-homoserine lactone (acyl-HSL) synthase in this bacterium. The N. winogradskyi genome contains genes encoding a putative acyl-HSL autoinducer synthase (nwi0626, nwiI) and a putative acyl-HSL autoinducer receptor (nwi0627, nwiR) with amino acid sequences 38 to 78% identical to those in Rhodopseudomonas palustris and other Rhizobiales. Expression of nwiI and nwiR correlated with acyl-HSL production during culture. N. winogradskyi produces two distinct acyl-HSLs, N-decanoyl-l-homoserine lactone (C10-HSL) and a monounsaturated acyl-HSL (C10:1-HSL), in a cell-density- and growth phase-dependent manner, during batch and chemostat culture. The acyl-HSLs were detected by bioassay and identified by ultraperformance liquid chromatography with information-dependent acquisition mass spectrometry (UPLC-IDA-MS). The C=C bond in C10:1-HSL was confirmed by conversion into bromohydrin and detection by UPLC-IDA-MS.


Subject(s)
4-Butyrolactone/analogs & derivatives , Nitrites/metabolism , Nitrobacter/metabolism , 4-Butyrolactone/biosynthesis , 4-Butyrolactone/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chromatography, Liquid , Gene Expression Regulation, Bacterial , Mass Spectrometry , Nitrobacter/classification , Nitrobacter/genetics , Nitrobacter/growth & development , Phylogeny , Transcription Factors/genetics , Transcription Factors/metabolism
12.
Arch Microbiol ; 197(1): 79-89, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25362506

ABSTRACT

Nitrosomonas europaea and Nitrobacter winogradskyi were grown singly and in co-culture in chemostats to probe for physiological differences between the two growth conditions. Co-culture growth medium containing 60 mM NH4 (+) resulted in a cell density (0.20-0.29 OD600) greater than the sum of the densities in single chemostat cultures, i.e., 0.09-0.14 OD600 for N. europaea with 60 mM NH4 (+)and 0.04-0.06 OD600 for N. winogradskyi with 60 mM NO2 (-). The NO2 (-)- and NH4 (+)-dependent O2 uptake rates, qRT-PCR, and microscopic observations indicated that in co-culture, N. europaea contributed ~0.20 OD600 (~80 %) and N. winogradskyi ~0.05 OD600 (~20 %). In co-culture, the transcriptomes showed that the mRNA levels of 773 genes in N. europaea (30.2 % of the genes) and of 372 genes in N. winogradskyi (11.8 % of the genes) changed significantly. Total cell growth and the analysis of the transcriptome revealed that in co-culture, N. europaea benefits more than N. winogradskyi.


Subject(s)
Microbial Interactions , Nitrobacter/growth & development , Nitrobacter/metabolism , Nitrosomonas europaea/growth & development , Nitrosomonas europaea/metabolism , Ammonia/metabolism , Bacterial Load , Carbon Dioxide/metabolism , Coculture Techniques , Culture Media , Energy Metabolism , Gene Expression , Genes, Bacterial , Movement , Nitrites/metabolism , Nitrobacter/genetics , Nitrosomonas europaea/genetics , Oxygen Consumption , Transcription, Genetic , Transcriptome
13.
FEMS Microbiol Ecol ; 88(3): 495-502, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24606542

ABSTRACT

Developing methods to differentiate the relative contributions of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) to ammonia (NH3) oxidation has been challenging due to the lack of compounds that selectively inhibit AOA. In this study, we investigated the effects of specific bacteria- and eukaryote-selective protein synthesis inhibitors on the recovery of acetylene (C2H2)-inactivated NH3 oxidation in the marine AOA Nitrosopumilus maritimus and compared the results with recovery of the AOB Nitrosomonas europaea. C2 H2 irreversibly inhibited N. maritimus NH3 oxidation in a similar manner to what was observed previously with N. europaea. However, cycloheximide (CHX), a widely used eukaryotic protein synthesis inhibitor, but not bacteria-specific protein synthesis inhibitors (kanamycin and gentamycin), inhibited the recovery of NH3-oxidizing activity in N. maritimus. CHX prevented the incorporation of (14)CO2 -labeling into cellular proteins, providing further evidence that CHX acts as a protein synthesis inhibitor in N. maritimus. If the effect of CHX on protein synthesis can be confirmed among other isolates of AOA, the combination of C2H2 inactivation followed by recovery of NH3 oxidation either in the presence of bacteria-selective protein synthesis inhibitors or CHX might be used to estimate the relative contributions of AOB and AOA to NH3 oxidation in natural environments.


Subject(s)
Acetylene/pharmacology , Archaea/drug effects , Archaea/metabolism , Cycloheximide/pharmacology , Protein Synthesis Inhibitors/pharmacology , Ammonia/metabolism , Nitrification , Nitrosomonas europaea/metabolism , Oxidation-Reduction
14.
Appl Environ Microbiol ; 79(21): 6544-51, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23956393

ABSTRACT

Ammonia (NH3)-oxidizing bacteria (AOB) and thaumarchaea (AOA) co-occupy most soils, yet no short-term growth-independent method exists to determine their relative contributions to nitrification in situ. Microbial monooxygenases differ in their vulnerability to inactivation by aliphatic n-alkynes, and we found that NH3 oxidation by the marine thaumarchaeon Nitrosopumilus maritimus was unaffected during a 24-h exposure to ≤ 20 µM concentrations of 1-alkynes C8 and C9. In contrast, NH3 oxidation by two AOB (Nitrosomonas europaea and Nitrosospira multiformis) was quickly and irreversibly inactivated by 1 µM C8 (octyne). Evidence that nitrification carried out by soilborne AOA was also insensitive to octyne was obtained. In incubations (21 or 28 days) of two different whole soils, both acetylene and octyne effectively prevented NH4(+)-stimulated increases in AOB population densities, but octyne did not prevent increases in AOA population densities that were prevented by acetylene. Furthermore, octyne-resistant, NH4(+)-stimulated net nitrification rates of 2 and 7 µg N/g soil/day persisted throughout the incubation of the two soils. Other evidence that octyne-resistant nitrification was due to AOA included (i) a positive correlation of octyne-resistant nitrification in soil slurries of cropped and noncropped soils with allylthiourea-resistant activity (100 µM) and (ii) the finding that the fraction of octyne-resistant nitrification in soil slurries correlated with the fraction of nitrification that recovered from irreversible acetylene inactivation in the presence of bacterial protein synthesis inhibitors and with the octyne-resistant fraction of NH4(+)-saturated net nitrification measured in whole soils. Octyne can be useful in short-term assays to discriminate AOA and AOB contributions to soil nitrification.


Subject(s)
Alkynes/metabolism , Archaea/metabolism , Betaproteobacteria/metabolism , Nitrification/physiology , Soil Microbiology , Alkynes/pharmacology , Ammonia/metabolism , Analysis of Variance , Archaea/drug effects , Betaproteobacteria/drug effects , Linear Models , Oxidation-Reduction , Species Specificity
15.
Proc Natl Acad Sci U S A ; 110(3): 1006-11, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23277575

ABSTRACT

The ammonia-oxidizing archaea have recently been recognized as a significant component of many microbial communities in the biosphere. Although the overall stoichiometry of archaeal chemoautotrophic growth via ammonia (NH(3)) oxidation to nitrite (NO(2)(-)) is superficially similar to the ammonia-oxidizing bacteria, genome sequence analyses point to a completely unique biochemistry. The only genomic signature linking the bacterial and archaeal biochemistries of NH(3) oxidation is a highly divergent homolog of the ammonia monooxygenase (AMO). Although the presumptive product of the putative AMO is hydroxylamine (NH(2)OH), the absence of genes encoding a recognizable ammonia-oxidizing bacteria-like hydroxylamine oxidoreductase complex necessitates either a novel enzyme for the oxidation of NH(2)OH or an initial oxidation product other than NH(2)OH. We now show through combined physiological and stable isotope tracer analyses that NH(2)OH is both produced and consumed during the oxidation of NH(3) to NO(2)(-) by Nitrosopumilus maritimus, that consumption is coupled to energy conversion, and that NH(2)OH is the most probable product of the archaeal AMO homolog. Thus, despite their deep phylogenetic divergence, initial oxidation of NH(3) by bacteria and archaea appears mechanistically similar. They however diverge biochemically at the point of oxidation of NH(2)OH, the archaea possibly catalyzing NH(2)OH oxidation using a novel enzyme complex.


Subject(s)
Ammonia/metabolism , Archaea/metabolism , Hydroxylamine/metabolism , Adenosine Triphosphate/biosynthesis , Aquatic Organisms/metabolism , Kinetics , Oxidation-Reduction , Oxidoreductases/metabolism , Oxygen Consumption
16.
Front Microbiol ; 3: 373, 2012.
Article in English | MEDLINE | ID: mdl-23109931

ABSTRACT

We examine and discuss literature targeted at identifying "active" subpopulations of soil microbial communities with regard to the factors that affect the balance between mineralization and immobilization/assimilation of N. Whereas a large fraction (≥50%) of soil microbial biomass can immediately respire exogenous substrates, it remains unclear what percentage of both bacterial and fungal populations are capable of expressing their growth potential. The factors controlling the relative amounts of respiratorily responsive biomass versus growth-active biomass will impact the balance between N mineralization and N immobilization. Stable isotope probing of de novo DNA synthesis, and pyrosequence analyses of rRNA:rDNA ratios in soils have identified both numerically dominant and rare microbial taxa showing greatest growth potential. The relative growth responses of numerically dominant or rare members of a soil community could influence the amount of N immobilized into biomass during a "growth" event. Recent studies have used selective antibiotics targeted at protein synthesis to measure the relative contributions of fungi and bacteria to ammonification and [Formula: see text] consumption, and of NH(3)-oxidizing archaea (AOA) and bacteria (AOB) to NH(3) oxidation. Evidence was obtained for bacteria to dominate [Formula: see text] assimilation and for fungi to be involved in both consumption of dissolved organic nitrogen (DON) and its ammonification. Soil conditions, phase of cropping system, [Formula: see text] availability, and soil pH influence the relative contributions of AOA and AOB to soil nitrification. A recent discovery that AOA can ammonify organic N sources and oxidize it to [Formula: see text] serves to illustrate roles for AOA in both the production and consumption of [Formula: see text]. Clearly, much remains to be learned about the factors influencing the relative contributions of bacteria, archaea, and fungi to processing organic and inorganic N, and their impact on the balance between mineralization and immobilization of N.

17.
ISME J ; 6(11): 2024-32, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22695861

ABSTRACT

It is well known that the ratio of ammonia-oxidizing archaea (AOA) and bacteria (AOB) ranges widely in soils, but no data exist on what might influence this ratio, its dynamism, or how changes in relative abundance influences the potential contributions of AOA and AOB to soil nitrification. By sampling intensively from cropped-to-fallowed and fallowed-to-cropped phases of a 2-year wheat/fallow cycle, and adjacent uncultivated long-term fallowed land over a 15-month period in 2010 and 2011, evidence was obtained for seasonal and cropping phase effects on the soil nitrification potential (NP), and on the relative contributions of AOA and AOB to the NP that recovers after acetylene inactivation in the presence and absence of bacterial protein synthesis inhibitors. AOB community composition changed significantly (P0.0001) in response to cropping phase, and there were both seasonal and cropping phase effects on the amoA gene copy numbers of AOA and AOB. Our study showed that the AOA:AOB shifts were generated by a combination of different phenomena: an increase in AOA amoA abundance in unfertilized treatments, compared with their AOA counterparts in the N-fertilized treatment; a larger population of AOB under the N-fertilized treatment compared with the AOB community under unfertilized treatments; and better overall persistence of AOA than AOB in the unfertilized treatments. These data illustrate the complexity of the factors that likely influence the relative contributions of AOA and AOB to nitrification under the various combinations of soil conditions and NH(4)(+)-availability that exist in the field.


Subject(s)
Ammonia/metabolism , Archaea/metabolism , Bacteria/metabolism , Soil Microbiology , Soil/chemistry , Fertilizers , Nitrification , Oxidation-Reduction
18.
Arch Microbiol ; 194(4): 305-13, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22173827

ABSTRACT

The importance of iron to the metabolism of the ammonia-oxidizing bacterium Nitrosomonas europaea is well known. However, the mechanisms by which N. europaea acquires iron under iron limitation are less well known. To obtain insight into these mechanisms, transcriptional profiling of N. europaea was performed during growth under different iron availabilities. Of 2,355 N. europaea genes on DNA microarrays, transcripts for 247 genes were identified as differentially expressed when cells were grown under iron limitation compared to cells grown under iron-replete conditions. Genes with higher transcript levels in response to iron limitation included those with confirmed or assigned roles in iron acquisition. Genes with lower transcript levels included those encoding iron-containing proteins. Our analysis identified several potentially novel iron acquisition systems in N. europaea and provided support for the primary involvement of a TonB-dependent heme receptor gene in N. europaea iron homeostasis. We demonstrated that hemoglobin can act as an iron source under iron-depleted conditions for N. europaea. In addition, we identified a hypothetical protein carrying a lipocalin-like domain that may have the ability to chelate iron for growth in iron-limited media.


Subject(s)
Genes, Bacterial , Iron/metabolism , Nitrosomonas europaea/growth & development , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Hemoglobins/metabolism , Nitrosomonas europaea/genetics , Nitrosomonas europaea/metabolism , Oligonucleotide Array Sequence Analysis , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Siderophores
19.
Methods Enzymol ; 496: 91-114, 2011.
Article in English | MEDLINE | ID: mdl-21514461

ABSTRACT

The assimilation (uptake or immobilization) of inorganic nitrogen (N) and the production of ammonium (NH(4)(+)) from organic N compounds are universal functions of microorganisms, and the balance between these two processes is tightly regulated by the relative demands of microbes for N and carbon (C). In a heterogeneous environment, such as soils, bulk measurements of N mineralization or immobilization do not reflect the variation of these two processes in different microhabitats (1µm-1mm). Our purpose is to review the approaches that can be applied to measure N mineralization and immobilization within soil microhabitats, at scales of millimeter (using adaptations of (15)N isotope pool dilution and IRMS-isotope ratio mass spectrometry) to micrometer (using SIMS-secondary ion mass spectrometry).


Subject(s)
Bacteria/isolation & purification , Nitrogen/metabolism , Soil Microbiology , Soil/analysis , Bacteria/classification , Bacteria/metabolism , Ecosystem , Isotopes/analysis , Nitrogen/analysis , Nitrogen/chemistry , Nitrogen Isotopes/analysis , Quaternary Ammonium Compounds/analysis , Quaternary Ammonium Compounds/chemistry , Rhizosphere , Spectrometry, Mass, Secondary Ion
20.
BMC Microbiol ; 11: 37, 2011 Feb 21.
Article in English | MEDLINE | ID: mdl-21338516

ABSTRACT

BACKGROUND: In response to environmental iron concentrations, many bacteria coordinately regulate transcription of genes involved in iron acquisition via the ferric uptake regulation (Fur) system. The genome of Nitrosomonas europaea, an ammonia-oxidizing bacterium, carries three genes (NE0616, NE0730 and NE1722) encoding proteins belonging to Fur family. RESULTS: Of the three N. europaea fur homologs, only the Fur homolog encoded by gene NE0616 complemented the Escherichia coli H1780 fur mutant. A N. europaea fur:kanP mutant strain was created by insertion of kanamycin-resistance cassette in the promoter region of NE0616 fur homolog. The total cellular iron contents of the fur:kanP mutant strain increased by 1.5-fold compared to wild type when grown in Fe-replete media. Relative to the wild type, the fur:kanP mutant exhibited increased sensitivity to iron at or above 500 µM concentrations. Unlike the wild type, the fur:kanP mutant was capable of utilizing iron-bound ferrioxamine without any lag phase and showed over expression of several outer membrane TonB-dependent receptor proteins irrespective of Fe availability. CONCLUSIONS: Our studies have clearly indicated a role in Fe regulation by the Fur protein encoded by N. europaea NE0616 gene. Additional studies are required to fully delineate role of this fur homolog.


Subject(s)
Bacterial Proteins/metabolism , Iron/metabolism , Nitrosomonas europaea/genetics , Repressor Proteins/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Binding Sites , Cloning, Molecular , DNA, Bacterial/genetics , Deferoxamine/metabolism , Ferric Compounds/metabolism , Gene Expression Regulation, Bacterial , Gene Knockout Techniques , Genetic Complementation Test , Molecular Sequence Data , Mutagenesis, Insertional , Mutation , Nitrosomonas europaea/metabolism , Phylogeny , Promoter Regions, Genetic , Repressor Proteins/genetics , Sequence Alignment , Siderophores/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...