Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(41): e2303079, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37317021

ABSTRACT

Silicon oxycarbide (SiOC) materials have arisen in the past few decades as a promising new class of glasses and glass-ceramics thanks to their advantageous chemical and thermal properties. Many applications, such as ion storage, sensing, filtering, or catalysis, require materials or coatings with high surface area and might benefit from the high thermal stability of SiOC. This work reports the first facile bottom-up approach to textured high surface area SiOC coatings obtained via direct pyrolysis of polysiloxane structures of well-defined shapes, such as nanofilaments or microrods. This work further investigates the thermal behavior of these structures by means of FT-IR, SEM, and EDX up to 1400 °C. The rods shrink in volume by ≈30% while their aspect ratio remains unaffected by pyrolysis until at least 1100 °C. The nano-sized filaments show signs of viscous flow already at a comparably low temperature of 900 °C which is very probably due to the nano-size effect. This might open a way to experimentally study the size-effect on the glass transition temperature of oxide glasses, an experimentally unexplored but very relevant topic. These structures have great potential, for example, as ion storage materials and supports in high temperature catalysis and CO2 conversion.

2.
Langmuir ; 39(17): 6160-6168, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37067495

ABSTRACT

The knowledge of droplet friction on liquid-infused surfaces (LIS) is of paramount importance for applications involving liquid manipulation. While the possible dissipation mechanisms are well-understood, the effect of surface texture has thus far been mainly investigated on LIS with highly regular solid topographies. In this work, we aim to address this experimental gap by studying the friction experienced by water droplets on LIS based on both random and regular polysilsesquioxane nanostructures. We show that the available models apply to the tested surfaces, but we observe a previously unreported droplet memory effect: as consecutive droplets travel along the same path, their velocity increases up to a plateau value before returning to the original state after a sufficiently long time. We study the features of this phenomenon by evaluating the motion of droplets when they cross the path of a previous sequence of droplets, discovering that moving droplets create a low-friction trace in their wake, whose size matches their base diameter. Finally, we attribute this to the temporary smoothing out of an initially conformal lubricant layer by means of a Landau-Levich-Derjaguin liquid film deposition behind the moving droplet. The proposed mechanism might apply to any LIS with a conformal lubricant layer.

3.
ACS Nano ; 16(6): 9442-9451, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35611949

ABSTRACT

Despite great scientific and industrial interest in waterproof cellulosic paper, its real world application is hindered by complicated and costly fabrication processes, limitations in scale-up production, and use of organic solvents. Furthermore, simultaneously achieving nonwetting properties and printability on paper surfaces still remains a technical and chemical challenge. Herein, we demonstrate a nonsolvent strategy for scalable and fast fabrication of waterproofing paper through in situ surface engineering with polysilsesquioxane nanorods (PSNRs). Excellent superhydrophobicity is attained on the functionalized paper surface with a water contact angle greater than 160°. Notably, the engineered paper features outstanding printability and writability, as well as greatly enhanced strength and integrity upon prolonged exposure to water (tensile strength ≈ 9.0 MPa). Additionally, the PSNRs concurrently armor paper-based printed items and artwork with waterproofing, self-cleaning, and antimicrobial functionalities without compromising their appearance, readability, and mechanical properties. We also demonstrate that the engineered paper holds the additional advantages of easy processing, low cost, and mechanochemical robustness, which makes it particularly promising for real world applications.

4.
Sci Rep ; 11(1): 20427, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34650120

ABSTRACT

Passive icephobic surfaces can provide a cost and energy efficient solution to many icing problems that are currently handled with expensive active strategies. Water-repellent surface treatments are promising candidates for this goal, but commonly studied systems, such as superhydrophobic surfaces and Slippery Liquid Infused Porous Surfaces (SLIPS), still face challenges in the stability and durability of their properties in icing environments. In this work, environmental icing conditions are simulated using an Icing Wind Tunnel, and ice adhesion is evaluated with a Centrifugal Adhesion Test. We show that superhydrophobic coral-like Silicone Nanofilament (SNF) coatings exhibit extremely low ice adhesion, to the point of spontaneous ice detachment, and good durability against successive icing cycles. Moreover, SNFs-based SLIPS show stably low ice adhesion for the whole duration of the icing test. Stability of surface properties in a cold environment is further investigated with water wettability at sub-zero surface temperature, highlighting the effect of surface chemistry on superhydrophobicity under icing conditions.

5.
Materials (Basel) ; 10(8)2017 Aug 08.
Article in English | MEDLINE | ID: mdl-28786939

ABSTRACT

The hydrolysis-condensation of trialkoxysilanes under strictly controlled conditions allows the production of silsesquioxanes (SSQs) with tunable size and architecture ranging from ladder to cage-like structures. These nano-objects can serve as building blocks for the preparation of hybrid organic/inorganic materials with selected properties. The SSQs growth can be tuned by simply controlling the reaction duration in the in situ water production route (ISWP), where the kinetics of the esterification reaction between carboxylic acids and alcohols rules out the extent of organosilane hydrolysis-condensation. Tunable SSQs with thiol functionalities (SH-NBBs) are suitable for further modification by exploiting the simple thiol-ene click reaction, thus allowing for modifying the wettability properties of derived coatings. In this paper, coatings were prepared from SH-NBBs with different architecture onto cotton fabrics and paper, and further functionalized with long alkyl chains by means of initiator-free UV-induced thiol-ene coupling with 1-decene (C10) and 1-tetradecene (C14). The coatings appeared to homogeneously cover the natural fibers and imparted a multi-scale roughness that was not affected by the click functionalization step. The two-step functionalization of cotton and paper warrants a stable highly hydrophobic character to the surface of natural materials that, in perspective, suggests a possible application in filtration devices for oil-water separation. Furthermore, the purification of SH-NBBs from ISWP by-products was possible during the coating process, and this step allowed for the fast, initiator-free, click-coupling of purified NBBs with C10 and C14 in solution with a nearly quantitative yield. Therefore, this approach is an alternative route to get sol-gel-derived, ladder-like, and cage-like SSQs functionalized with long alkyl chains.

SELECTION OF CITATIONS
SEARCH DETAIL
...