Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Biomembr ; 1860(7): 1447-1451, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29694834

ABSTRACT

Electron spin echo envelope modulation (ESEEM) spectroscopy in combination with site-directed spin labeling (SDSL) has been established as a valuable biophysical technique to provide site-specific local secondary structure of membrane proteins. This pulsed electron paramagnetic resonance (EPR) method can successfully distinguish between α-helices, ß-sheets, and 310-helices by strategically using 2H-labeled amino acids and SDSL. In this study, we have explored the use of 13C-labeled residues as the NMR active nuclei for this approach for the first time. 13C-labeled d5-valine (Val) or 13C-labeled d6-leucine (Leu) were substituted at a specific Val or Leu residue (i), and a nitroxide spin label was positioned 2 or 3 residues away (denoted i-2 and i-3) on the acetylcholine receptor M2δ (AChR M2δ) in a lipid bilayer. The 13C ESEEM peaks in the FT frequency domain data were observed for the i-3 samples, and no 13C peaks were observed in the i-2 samples. The resulting spectra were indicative of the α-helical local secondary structure of AChR M2δ in bicelles. This study provides more versatility and alternative options when using this ESEEM approach to study the more challenging recombinant membrane protein secondary structures.


Subject(s)
Amino Acids/chemistry , Electron Spin Resonance Spectroscopy/methods , Membrane Proteins/chemistry , Protein Structure, Secondary , Carbon Isotopes
2.
J Phys Chem B ; 122(16): 4388-4396, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29614227

ABSTRACT

An electron spin echo envelope modulation (ESEEM) approach was used to probe local secondary structures of membrane proteins and peptides. This ESEEM method detects dipolar couplings between 2H-labeled nuclei on the side chains of an amino acid (Leu or Val) and a strategically placed nitroxide spin-label in the proximity up to 8 Å. ESEEM spectra patterns for different samples correlate directly to the periodic structural feature of different secondary structures. Since this pattern can be affected by the side chain length and flexibility of the 2H-labeled amino acid used in the experiment, it is important to examine several different hydrophobic amino acids (d3 Ala, d8 Val, d8 Phe) utilizing this ESEEM approach. In this work, a series of ESEEM data were collected on the AChR M2δ membrane peptide to build a reference for the future application of this approach for various biological systems. The results indicate that, despite the relative intensity and signal-to-noise level, all amino acids share a similar ESEEM modulation pattern for α-helical structures. Thus, all commercially available 2H-labeled hydrophobic amino acids can be utilized as probes for the further application of this ESEEM approach. Also, the ESEEM signal intensities increase as the side chain length gets longer or less rigid. In addition, longer side chain amino acids had a larger 2H ESEEM FT peak centered at the 2H Larmor frequency for the i ± 4 sample when compared to the corresponding i ± 3 sample. For shorter side chain amino acids, the 2H ESEEM FT peak intensity ratio between i ± 4 and i ± 3 was not well-defined.


Subject(s)
Amino Acids/chemistry , Deuterium/chemistry , Peptides/chemistry , Electron Spin Resonance Spectroscopy , Hydrophobic and Hydrophilic Interactions , Protein Structure, Secondary
3.
J Phys Chem B ; 121(14): 2961-2967, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28339206

ABSTRACT

Electron spin echo envelope modulation (ESEEM) spectroscopy was used to distinguish between the local secondary structures of an α-helix and a 310-helix. Previously, we have shown that ESEEM spectroscopy in combination with site-directed spin labeling (SDSL) and 2H-labeled amino acids (i) can probe the local secondary structure of α-helices, resulting in an obvious deuterium modulation pattern, where i+4 positions generally show larger 2H ESEEM peak intensities than i+3 positions. Here, we have hypothesized that due to the unique turn periodicities of an α-helix (3.6 residues per turn with a pitch of 5.4 Å) and a 310-helix (3.1 residues per turn with a pitch of 5.8-6.0 Å), the opposite deuterium modulation pattern would be observed for a 310-helix. In this study, 2H-labeled d10-leucine (Leu) was substituted at a specific Leu residue (i) and a nitroxide spin label was positioned 2, 3, and 4 residues away (denoted i+2 to i+4) on an amphipathic model peptide, LRL8. When LRL8 is solubilized in trifluoroethanol (TFE), the peptide adopts an α-helical structure, and alternatively, forms a 310-helical secondary structure when incorporated into liposomes. Larger 2H ESEEM peaks in the FT frequency domain data were observed for the i+4 samples when compared to the i+3 samples for the α-helix whereas the opposite pattern was revealed for the 310-helix. These unique patterns provide pertinent local secondary structural information to distinguish between the α-helical and 310-helical structural motifs for the first time using this ESEEM spectroscopic approach with short data acquisition times (∼30 min) and small sample concentrations (∼100 µM) as well as providing more site-specific secondary structural information compared to other common biophysical approaches, such as CD.


Subject(s)
Electrons , Peptides/chemistry , Protein Structure, Secondary , Spin Labels
SELECTION OF CITATIONS
SEARCH DETAIL
...