Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sens Actuators B Chem ; 140(1): 278-286, 2009 Jun 18.
Article in English | MEDLINE | ID: mdl-20161128

ABSTRACT

A novel approach to integrating biochip and microfluidic devices is reported in which microcontact printing is a key fabrication technique. The process is performed using an automated microcontact printer that has been developed as an application-specific tool. As proof-of-concept the instrument is used to consecutively and selectively graft patterns of antibodies at the bottom of a glass channel for use in microfluidic immunoassays. Importantly, feature collapse due to over compression of the PDMS stamp is avoided by fine control of the stamp's compression during contact. The precise alignment of biomolecules at the intersection of microfluidic channel and integrated optical waveguides has been achieved, with antigen detection performed via fluorescence excitation. Thus, it has been demonstrated that this technology permits sequential microcontact printing of isolated features consisting of functional biomolecules at any position along a microfluidic channel and also that it is possible to precisely align these features with existing components.

2.
Rev Sci Instrum ; 79(6): 064102, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18601419

ABSTRACT

An instrument for automated microcontact printing (microCP) on microscope slides is described. The movement of the stamp, which is actuated by a computer controlled pneumatic actuator, is precisely guided until it makes contact with the substrate. As a consequence, the absolute position of the microprinted patterns is reproducible over a series of substrates with 1 mum standard deviation. Exchange of substrates and stamps is a quick and simple procedure. This makes possible the microprinting of adjacent or superimposable patterns, with different products, in a reproducible manner. Furthermore, a novel approach is described for adjusting the load on the stamp during contact. Two adjustable screws are set up so that their length (with reference to the substrate holder) limits the stamp compression during contact. The load on the stamp is proportional to the stamp compression and from the experimental point of view, this is controlled by the operator adjusting the screws. This makes possible the microCP with stamps incorporating large surface features as well as stamps with isolated features raised on the surface. For proof of concept, automated microCP of a single parallelepiped polydimethylsiloxane feature, with a surface of 2 cm x 30 microm and a height of 25 mum, is demonstrated inside a microfluidic channel without roof collapse. A second example is provided with a single cross feature, possessing an overall surface of 140 x 140 microm(2) and a height of 14 microm. Potential applications of this versatile, inexpensive and compact instrument are discussed. The machine's potential for high throughput also makes it suitable for mass production applications.


Subject(s)
Computers , Dimethylpolysiloxanes , Nanotechnology/instrumentation , Nanotechnology/methods , Automation/instrumentation , Automation/methods , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...