Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 12077, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802482

ABSTRACT

The term "Internet of Things" (IoT) refers to a system of networked computing devices that may work and communicate with one another without direct human intervention. It is one of the most exciting areas of computing nowadays, with its applications in multiple sectors like cities, homes, wearable equipment, critical infrastructure, hospitals, and transportation. The security issues surrounding IoT devices increase as they expand. To address these issues, this study presents a novel model for enhancing the security of IoT systems using machine learning (ML) classifiers. The proposed approach analyzes recent technologies, security, intelligent solutions, and vulnerabilities in ML IoT-based intelligent systems as an essential technology to improve IoT security. The study illustrates the benefits and limitations of applying ML in an IoT environment and provides a security model based on ML that manages autonomously the rising number of security issues related to the IoT domain. The paper proposes an ML-based security model that autonomously handles the growing number of security issues associated with the IoT domain. This research made a significant contribution by developing a cyberattack detection solution for IoT devices using ML. The study used seven ML algorithms to identify the most accurate classifiers for their AI-based reaction agent's implementation phase, which can identify attack activities and patterns in networks connected to the IoT. The study used seven ML algorithms to identify the most accurate classifiers for their AI-based reaction agent's implementation phase, which can identify attack activities and patterns in networks connected to the IoT. Compared to previous research, the proposed approach achieved a 99.9% accuracy, a 99.8% detection average, a 99.9 F1 score, and a perfect AUC score of 1. The study highlights that the proposed approach outperforms earlier machine learning-based models in terms of both execution speed and accuracy. The study illustrates that the suggested approach outperforms previous machine learning-based models in both execution time and accuracy.

2.
Nanomaterials (Basel) ; 12(14)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35889613

ABSTRACT

The lid-driven top wall's influence combined with the side walls' waviness map induce the mixed convection heat transfer, flow behavior, and entropy generation of a hybrid nanofluid (Fe3O4-MWCNT/water), a process analyzed through the present study. The working fluid occupies a permeable cubic chamber and is subjected to a magnetic field. The governing equations are solved by employing the GFEM method. The results show that the magnetic force significantly affects the working fluid's thermal and flow behavior, where the magnetic force's perpendicular direction remarkably improves the thermal distribution at Re = 500. Also, increasing Ha and decreasing Re drops both the irreversibility and the heat transfer rate. In addition, the highest undulation number on the wavy-sided walls gives the best heat transfer rate and the highest irreversibility.

3.
Nanomaterials (Basel) ; 12(15)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35893487

ABSTRACT

Thermal energy storage via the use of latent heat and phase transition materials is a popular technology in energy storage systems. It is vital to research different thermal enhancement techniques to further improve phase transition materials' weak thermal conductivity in these systems. This work addresses the creation of a basic shell and a tube thermal storage device with wavy outer walls. Then, two key methods for thermal augmentation are discussed: fins and the use of a nano-enhanced phase change material (NePCM). Using the enthalpy-porosity methodology, a numerical model is developed to highlight the viability of designing such a model utilizing reduced assumptions, both for engineering considerations and real-time predictive control methods. Different concentrations of copper nanoparticles (0, 2, and 4 vol%) and wavenumbers (4,6 and 8) are investigated in order to obtain the best heat transmission and acceleration of the melting process. The time required to reach total melting in the studied TES system is reduced by 14% and 31% in the examined TES system, respectively, when NePCM (4 vol% nanoparticles) and N = 8 are used instead of pure PCM and N = 4. The finding from this investigation could be used to design a shell-and-tube base thermal energy storage unit.

4.
Nanomaterials (Basel) ; 12(13)2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35808041

ABSTRACT

This paper includes a numerical investigation of a hybrid fluid containing 4% of Al2O3-Cu nanoparticles in a lid-driven container. The upper wall of the container has a high temperature and is movable. The lower wall is cool and wavy. An obstacle is set in the middle of the container for its effect on thermal activity. The medium is permeable to the fluid, and the entire system is immersed in a fixed-effect magnetic field. The digital simulation is achieved using the technique of Galerkin finite element (GFEM) which solves the differential equations. This investigation aims to know the pattern of heat transfer between the lateral walls and the lower wall of the container through the intervention of a set of conditions and criteria, namely: the strength of the magnetic field changes in the range of (Ha = 0 to 100); the chamber porosity varies in the range of (Da = 10-5 to 10-2); the strength of buoyancy force is varied according to the Grashof number (Gr = 102 to 104); the cross-section of the baffle includes the following shapes-elliptical, square, triangular and circular; the surface of the lower wall contains waves; and the number changes (N = 2 to 8). Through this research, it was concluded that the triangular shape of the baffle is the best in terms of thermal activity. Also, increasing the number of lower-wall waves reduces thermal activity. For example, the change in the shape of the obstacle from the elliptical to triangular raises the value of Nu number at a rate of 15.54% for Ha = 0, N = 8, and Gr = 104.

SELECTION OF CITATIONS
SEARCH DETAIL
...