Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 23(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37430699

ABSTRACT

Cerium-doped-silica glasses are widely used as ionizing radiation sensing materials. However, their response needs to be characterized as a function of measurement temperature for application in various environments, such as in vivo dosimetry, space and particle accelerators. In this paper, the temperature effect on the radioluminescence (RL) response of Cerium-doped glassy rods was investigated in the 193-353 K range under different X-ray dose rates. The doped silica rods were prepared using the sol-gel technique and spliced into an optical fiber to guide the RL signal to a detector. Then, the experimental RL levels and kinetics measurements during and after irradiation were compared with their simulation counterparts. This simulation is based on a standard system of coupled non-linear differential equations to describe the processes of electron-hole pairs generation, trapping-detrapping and recombination in order to shed light on the temperature effect on the RL signal dynamics and intensity.

2.
Sensors (Basel) ; 24(1)2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38203109

ABSTRACT

Optical sensors constitute attractive alternatives to resistive probes for the sensing and monitoring of temperature (T). In this work, we investigated, in the range from 2 to 300 K, the thermal behavior of Yb2+ ion photoluminescence (PL) in glass hosts for cryogenic thermometry. To that end, two kinds of Yb2+-doped preforms, with aluminosilicate and aluminophosphosilicate core glasses, were made using the modified chemical vapor deposition (MCVD) technique. The obtained preforms were then elongated, at about 2000 °C, to canes with an Yb2+-doped core of about 500 µm. Under UV excitation and independently of the core composition, all samples of preforms and their corresponding canes presented a wide visible emission band attributed to Yb2+ ions. Furthermore, PL kinetics measurements, recorded at two emission wavelengths (502 and 582 nm) under 355 nm pulsed excitation, showed an increase, at very low T, followed by a decrease in lifetime until room temperature (RT). A modified two-level model was proposed to interpret such a decay time dependence versus T. Based on the fit of lifetime data with this model, the absolute (Sa) and relative (Sr) sensitivities were determined for each sample. For both the preform and its corresponding cane, the aluminophosphosilicate glass composition featured the highest performances in the cryogenic domain, with values exceeding 28.3 µsK-1 and 94.4% K-1 at 30 K for Sa and Sr, respectively. The aluminophosphosilicate preform also exhibited the wider T operating range of 10-300 K. Our results show that Yb2+-doped silicate glasses are promising sensing materials for optical thermometry applications in the cryogenic domain.

3.
Sensors (Basel) ; 22(23)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36501950

ABSTRACT

The radiation-induced emission (RIE) of Gd3+-doped sol-gel silica glass has been shown to have suitable properties for use in the dosimetry of beams of ionizing radiation in applications such as radiotherapy. Linear electron accelerators are commonly used as clinical radiotherapy beams, and in this paper, the RIE properties were investigated under electron irradiation. A monochromator setup was used to investigate the light properties in selected narrow wavelength regions, and a spectrometer setup was used to measure the optical emission spectra in various test configurations. The RIE output as a function of depth in acrylic was measured and compared with a reference dosimeter system for various electron energies, since the dose-depth measuring abilities of dosimeters in radiotherapy is of key interest. The intensity of the main radiation-induced luminescence (RIL) of the Gd3+-ions at 314 nm was found to well represent the dose as a function of depth, and was possible to separate from the Cherenkov light that was also induced in the measurement setup. After an initial suppression of the luminescence following the electron bunch, which is ascribed to a transient radiation-induced attenuation from self-trapped excitons (STEX), the 314 nm component was found to have a decay time of approximately 1.3 ms. An additional luminescence was also observed in the region 400 nm to 600 nm originating from the decay of the STEX centers, likely exhibiting an increasing luminescence with a dose history in the tested sample.


Subject(s)
Electrons , Particle Accelerators , Radiometry , Luminescence , Glass
4.
Sensors (Basel) ; 21(22)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34833599

ABSTRACT

Radiation-induced emission of doped sol-gel silica glass samples was investigated under a pulsed 20-MeV electron beam. The studied samples were drawn rods doped with cerium, copper, or gadolinium ions, which were connected to multimode pure-silica core fibers to transport the induced luminescence from the irradiation area to a signal readout system. The luminescence pulses in the samples induced by the electron bunches were studied as a function of deposited dose per electron bunch. All the investigated samples were found to have a linear response in terms of luminescence as a function of electron bunch sizes between 10-5 Gy/bunch and 1.5×10-2 Gy/bunch. The presented results show that these types of doped silica rods can be used for monitoring a pulsed electron beam, as well as to evaluate the dose deposited by the individual electron bunches. The electron accelerator used in the experiment was a medical type used for radiation therapy treatments, and these silica rod samples show high potential for dosimetry in radiotherapy contexts.


Subject(s)
Electrons , Silicon Dioxide , Luminescence , Radiometry
5.
Sensors (Basel) ; 21(10)2021 May 12.
Article in English | MEDLINE | ID: mdl-34066035

ABSTRACT

The incorporation of Ce3+ ions in silicate glasses is a crucial issue for luminescence-based sensing applications. In this article, we report on silica glass preforms doped with cerium ions fabricated by modified chemical vapor deposition (MCVD) under different atmospheres in order to favor the Ce3+ oxidation state. Structural analysis and photophysical investigations are performed on the obtained glass rods. The preform fabricated under reducing atmosphere presents the highest photoluminescence (PL) quantum yield (QY). This preform drawn into a 125 µm-optical fiber, with a Ce-doped core diameter of about 40 µm, is characterized to confirm the presence of Ce3+ ions inside this optical fiber core. The fiber is then tested in an all-fibered X-ray dosimeter configuration. We demonstrate that this fiber allows the remote monitoring of the X-ray dose rate (flux) through a radioluminescence (RL) signal generated around 460 nm. The response dependence of RL versus dose rate exhibits a linear behavior over five decades, at least from 330 µGy(SiO2)/s up to 22.6 Gy(SiO2)/s. These results attest the potentialities of the MCVD-made Ce-doped material, obtained under reducing atmosphere, for real-time remote ionizing radiation dosimetry.

6.
Materials (Basel) ; 13(11)2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32521681

ABSTRACT

Optically activated glasses are essential to the development of new radiation detection systems. In this study, a bulk glassy rod co-doped with Cu and Ce ions, was prepared via the sol-gel technique and was drawn at about 2000 °C into a cylindrical capillary rod to evaluate its optical and radioluminescence properties. The sample showed optical absorption and photoluminescence (PL) bands attributed to Cu+ and Ce3+ ions. The presence of these two ions inside the host silica glass matrix was also confirmed using PL kinetics measurements. The X-ray dose rate was remotely monitored via the radioluminescence (RL) signal emitted by the Cu/Ce scintillating sensor. In order to transport the optical signal from the irradiation zone to the detection located in the instrumentation zone, an optical transport fiber was spliced to the sample under test. This RL signal exhibited a linear behavior regarding the dose rate in the range at least between 1.1 mGy(SiO2)/s and 34 Gy(SiO2)/s. In addition, a spectroscopic analysis of this RL signal at different dose rates revealed that the same energy levels attributed to Cu+ and Ce3+ ions are involved in both the RL mechanism and the PL phenomenon. Moreover, integrated intensities of the RL sub-bands related to both Cu+ and Ce3+ ions depend linearly on the dose rate at least in the investigated range from 102 mGy(SiO2)/s up to 4725 mGy(SiO2)/s. The presence of Ce3+ ions also reduces the formation of HC1 color centers after X-ray irradiation.

7.
Sci Rep ; 7(1): 3178, 2017 06 09.
Article in English | MEDLINE | ID: mdl-28600497

ABSTRACT

We report on the investigation of Bismuth-doped pure silica glass without other co-dopant by the tech- nique of magnetic circular dichroism (MCD), which allows the direct probing of the ground state of optical centres. Taking into account the results of conventional optical spectroscopy, we show that the observed MCD bands belong to the centre responsible for the red photoluminescence in this material. Measurements of the temperature and field dependences indicate that the MCD effect is caused by the even-electron system. This, however, opposes the widespread opinion that Bi2+ ions are the origin of red photoluminescence in Bismuth-doped silica glasses. On the other hand, the lasing centre responsi- ble for the near infrared photoluminescence does not exhibit any magnetic optical activity connected to its ground state. As a consequence, we conclude that the ground state of lasing centre is a magnetic singlet with the effective spin S = 0.

8.
Opt Lett ; 42(7): 1408-1411, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28362781

ABSTRACT

Accurate control of both the doping distribution inside the fiber core and the low refractive index contrast between the fiber core and cladding materials is essential for the development of high-power fiber lasers based on the use of single-mode large-mode-area (LMA) optical fibers. Herein, sol-gel monolithic F/Yb3+-codoped silica glasses were prepared from porous large silica xerogels doped with ytterbium salt solution, which had been subjected to fluorination with hexafluoroethane gas, before subsequent sintering. The fluorine content inside the doped glass has been varied by adjusting the fluorination duration. The space homogeneity of fluorine and ytterbium concentrations in the cylindrical preforms has been checked by chemical analysis and Raman spectroscopy. Moreover, the glass with the lowest fluorine content has been successfully integrated as a core material in a microstructured optical fiber made using the stack-and-draw method. This fiber was tested in an all-fiber cavity laser architecture to evaluate potential lasing performances of the F/Yb3+-codoped silica glass. It presents a maximum efficiency of 70.4%, achieved at 1031 nm from a 1.16 m length fiber. These results confirm the potentialities of the obtained F/Yb3+-codoped glasses for the fabrication of LMA optical fiber lasers.

9.
Nanoscale Res Lett ; 12(1): 206, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28325038

ABSTRACT

Erbium-doped fiber amplifiers (EDFAs) for harsh environments require to develop specific fabrication methods of Er 3+-doped fibers (EDFs) so as to limit the impact of radiation-induced absorption. In this context, a compromise has to be found between the concentration of Erbium and the glass composition. On the one hand, high concentration of Er 3+ ions helps to reduce the length of the EDF and hence the cumulated attenuation but generally leads to luminescence quenching mechanisms that limit the performances. On the other hand, so as to avoid such quenching effect, glass modifiers like Al 3+ or P 5+ ions are used in the fabrication of commercial EDFs but are not suitable for applications in harsh environment because these glass modifiers are precursors of radiation-induced structural defects and consequently of optical losses. In this work, we investigate the concept of smart doping via material nanostructuring as a way to fabricate more efficient optical devices. This approach aims at optimizing the glass composition of the fiber core in order to use the minimal content of glass modifiers needed to reach the suited level of performances for EDFA. Er 3+-doped alumina nanoparticles (NPs), as precursor of Er 3+ ions in the preform fabrication process, were used to control the environment of rare-earth ions and their optical properties. Structural and optical characterizations of NP-doped preforms and optical fibers drawn from such preforms demonstrate the interest of this approach for small concentrations of aluminum in comparison to similar glass compositions obtained by a conventional technique.

10.
Appl Opt ; 55(27): 7455-61, 2016 Sep 20.
Article in English | MEDLINE | ID: mdl-27661569

ABSTRACT

The impact of fictive temperature (Tf) on the evolution of point defects and optical attenuation in non-doped and Er3+-doped sol-gel silica glasses was studied and compared to Suprasil F300 and Infrasil 301 glasses before and after γ-irradiation. To this aim, sol-gel optical fiber preforms have been fabricated by the densification of erbium salt-soaked nanoporous silica xerogels through the polymeric sol-gel technique. These γ-irradiated fiber preforms have been characterized by FTIR, UV-vis-NIR absorption spectroscopy, electron paramagnetic resonance, and photoluminescence measurements. We showed that a decrease in the glass fictive temperature leads to a decrease in the glass disorder and strained bonds. This mainly results in a lower defect generation rate and thus less radiation-induced attenuation in the UV-vis range. Furthermore, it was found that γ-radiation "hardness" is higher in Er3+-doped sol-gel silica compared to un-doped sol-gel silica and standard synthetic silica glasses. The present work demonstrates an effective strategy to improve the radiation resistance of optical fiber preforms and glasses through glass fictive temperature reduction.

11.
Opt Lett ; 40(7): 1591-4, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25831392

ABSTRACT

Unusual temperature dependence of the anti-Stokes photoluminescence (ASPL) at 734 nm was found in Ga/Bi co-doped sol-gel silica glass. While in the temperature range of 450-873 K, the behavior of ASPL is completely determined by the thermal population of the excited state levels, its intensity is continuously increasing with decreasing temperature in the range of 77-430 K. By measuring the pump power dependence of ASPL at 300 K, we show that the latter can be described via the two-step intracenter excitation process and subsequent relaxation. Based on the measurements of temperature dependence of the excitation spectra of near infrared band (at 1140 nm) and that corresponding to the ASPL (at 734 nm), we propose a simple rate equation model to explain the unusual behavior of ASPL.

12.
Opt Express ; 23(5): 5406-16, 2015 Mar 09.
Article in English | MEDLINE | ID: mdl-25836775

ABSTRACT

Active coherent beam combination using a 7-non-coupled core, polarization maintaining, air-clad, Yb-doped fiber is demonstrated as a monolithic and compact power-scaling concept for ultrafast fiber lasers. A microlens array matched to the multicore fiber and an active phase controller composed of a spatial light modulator applying a stochastic parallel gradient descent algorithm are utilized to perform coherent combining in the tiled aperture geometry. The mitigation of nonlinear effects at a pulse energy of 8.9 µJ and duration of 860 fs is experimentally verified at a repetition rate of 100 kHz. The experimental combining efficiency results in a far field central lobe carrying 49% of the total power, compared to an ideal value of 76%. This efficiency is primarily limited by group delay differences between cores which is identified as the main drawback of the system. Minimizing these group delay issues, e.g. by using short and straight rod-type multicore fibers, should allow a practical power scaling solution for femtosecond fiber systems.

13.
Opt Express ; 22(5): 5659-74, 2014 Mar 10.
Article in English | MEDLINE | ID: mdl-24663907

ABSTRACT

Bismuth-Gallium co-doped silica glass fiber preform was prepared from nano-porous silica xerogels using a conventional solution doping technique with a heterotrinuclear complex and subsequent sintering. Ga-connected optical Bismuth active center (BAC) was identified as the analogue of Al-connected BAC. Visible and infrared photoluminescence (PL) were investigated in a wide temperature range of 1.46 - 300 K. Based on the results of the continuous wave (CW) and time resolved (TR) spectroscopy we identify the centers emitting in the spectral region of 480 - 820 nm as Bi(+) ions. The near infrared (NIR) PL around 1100 nm consists of two bands. While the first one can be ascribed to the transition in Bi(+) ion, the second band is presumably associated to defects. We put in evidence the energy transfer (ET) between Bi(+) ions and the second NIR emitting center via quadrupole-quadrupole and dipole-quadrupole mechanisms of interactions. Finally, we propose the energy level diagram of Bi(+) ion interacting with this defect.

14.
Nanoscale Res Lett ; 8(1): 266, 2013 Jun 06.
Article in English | MEDLINE | ID: mdl-23742134

ABSTRACT

Space localization of the linear and nonlinear optical properties in a transparent medium at the submicron scale is still a challenge to yield the future generation of photonic devices. Laser irradiation techniques have always been thought to structure the matter at the nanometer scale, but combining them with doping methods made it possible to generate local growth of several types of nanocrystals in different kinds of silicate matrices. This paper summarizes the most recent works developed in our group, where the investigated nanoparticles are either made of metal (gold) or chalcogenide semiconductors (CdS, PbS), grown in precursor-impregnated porous xerogels under different laser irradiations. This review is associated to new results on silver nanocrystals in the same kind of matrices. It is shown that, depending on the employed laser, the particles can be formed near the sample surface or deep inside the silica matrix. Photothermal and/or photochemical mechanisms may be invoked to explain the nanoparticle growth, depending on the laser, precursor, and matrix. One striking result is that metal salt reduction, necessary to the production of the corresponding nanoparticles, can efficiently occur due to the thermal wrenching of electrons from the matrix itself or due to multiphoton absorption of the laser light by a reducer additive in femtosecond regime. Very localized semiconductor quantum dots could also be generated using ultrashort pulses, but while PbS nanoparticles grow faster than CdS particles due to one-photon absorption, this better efficiency is counterbalanced by a sensitivity to oxidation. In most cases where the reaction efficiency is high, particles larger than the pores have been obtained, showing that a fast diffusion of the species through the interconnected porosity can modify the matrix itself. Based on our experience in these techniques, we compare several examples of laser-induced nanocrystal growth in porous silica xerogels, which allows extracting the best experimental conditions to obtain an efficient particle production and to avoid stability or oxidation problems.

15.
Analyst ; 138(3): 805-12, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23223216

ABSTRACT

Understanding interactions of glycans with proteins in key biological events has seen the development of various analytical methods such as microarray techniques. Label-free approaches, such as surface plasmon resonance (SPR) techniques are particularly attractive and we explore here the potential of a novel interface composed of lamellar Ti/Au/silicon dioxide derivatized with sugars to probe lectin-sugar interactions by SPR. Two parallel surface functionalization strategies have been developed: one in which azide-functionalized surfaces are linked via a Cu(I) "click" method to alkynyl-derivatized glycan partners and another wherein perfluorophenyl azide-functionalized surfaces are reacted through a C-H insertion photocoupling reaction with underivatized glycans. The effectiveness of the two interfaces is assessed for their lectin-recognition abilities in an SPR format.


Subject(s)
Copper/chemistry , Surface Plasmon Resonance , Ultraviolet Rays , Benzoates/chemistry , Catalysis , Click Chemistry , Gold/chemistry , Lectins/chemistry , Lectins/metabolism , Lens Plant/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , Silicon Dioxide/chemistry , Titanium/chemistry
16.
Opt Express ; 21(25): 31646-59, 2013 Dec 16.
Article in English | MEDLINE | ID: mdl-24514737

ABSTRACT

Design and experimental characterization of Er(3+)-doped fiber amplifiers supporting 6 spatial modes in wavelength division multiplexing regime are reported. The study is first focused on Er(3+)-doped circular ring-structured profiles accessible with conventional fiber manufacturing techniques. However, these fiber designs, optimized for gain equalization, prove to be difficult to obtain experimentally. So as to go beyond these limits, an alternative approach based on a "pixelated" Er(3+)-doped core is proposed. Several possible designs are theoretically investigated and a first fabrication of micro-structured fiber is presented.

17.
Nanoscale Res Lett ; 7(1): 487, 2012 Aug 31.
Article in English | MEDLINE | ID: mdl-22937818

ABSTRACT

Ionic copper- or silver-doped dense silica rods have been prepared by sintering sol-gel porous silica xerogels doped with ionic precursors. The precipitation of Cu or Ag nanoparticles was achieved by heat treatment under hydrogen followed by annealing under air atmosphere. The surface plasmon resonance bands of copper and silver nanoparticles have been clearly observed in the absorption spectra. The spectral positions of these bands were found to depend slightly on the particle size, which could be tuned by varying the annealing conditions. Hence, transmission electron microscopy showed the formation of spherical copper nanoparticles with diameters in the range of 3.3 to 5.6 nm. On the other hand, in the case of silver, both spherical nanoparticles with diameters in the range of 3 to 6 nm and nano-rods were obtained.

18.
Opt Express ; 20(28): 29751-60, 2012 Dec 31.
Article in English | MEDLINE | ID: mdl-23388802

ABSTRACT

We report the fabrication and characterization of a photonic crystal fiber (PCF) having a sol-gel core doped with ionic copper. Optical measurements demonstrate that the ionic copper is preserved in the silica glass all along the preparation steps up to fiber drawing. The photoluminescence results clearly show that such an ionic copper-doped fiber constitutes a potential candidate for UV-C (200-280 nm) radiation dosimetry. Indeed, the Cu⁺-related visible photoluminescence of the fiber shows a linear response to 244 nm light excitation measured for an irradiation power up to 2.7 mW at least on the Cu-doped PCF core. Moreover, this response was found to be fully reversible within the measurement accuracy of this study ( ± 1%), underlying the remarkable stability of copper in the Cu⁺ oxidation state within the pure silica core prepared by a sol-gel route. This reversibility offers possibilities for the achievement of reusable real-time optical fiber UV-C dosimeters.

19.
Nanoscale Res Lett ; 6: 542, 2011 Oct 04.
Article in English | MEDLINE | ID: mdl-21970510

ABSTRACT

Pulsed femtosecond laser irradiation at low repetition rate, without any annealing, has been used to localize the growth of PbS nanoparticles, for the first time, inside a transparent porous silica matrix prepared by a sol-gel route. Before the irradiation, the porous silica host has been soaked within a solution containing PbS precursors. The effect of the incident laser power on the particle size was studied. X-ray diffraction was used to identify the PbS crystallites inside the irradiated areas and to estimate the average particle size. The localized laser irradiation led to PbS crystallite size ranging between 4 and 8 nm, depending on the incident femtosecond laser power. The optical properties of the obtained PbS-silica nanocomposites have been investigated using absorption and photoluminescence spectroscopies. Finally, the stability of PbS nanoparticles embedded inside the host matrices has been followed as a function of time, and it has been shown that this stability depends on the nanoparticle mean size.

20.
Langmuir ; 27(9): 5498-505, 2011 May 03.
Article in English | MEDLINE | ID: mdl-21480606

ABSTRACT

Monolayers of metal complexes were covalently attached to the surface of lamellar SPR interfaces (Ti/Ag/a-Si(0.63)C(0.37)) for binding histidine-tagged peptides with a controlled molecular orientation. The method is based on the activation of surface acid groups with N-hydroxysuccinimide (NHS), followed by an amidation reaction with (S)-N-(5-amino-1-carboxypentyl)iminodiacetic acid (NTA). FTIR and X-ray photoelectron spectroscopy (XPS) were used to characterize each surface modification step. The NTA modified SPR interface effectively chelated Cu(2+) ions. Once loaded with metal ions, the modified SPR interface was able to bind specifically to histidine-tagged peptides. The binding process was followed by surface plasmon resonance (SPR) in a droplet based configuration. The Cu(2+)-NTA modified interface showed protein loading comparable to commercially available NTA chips based on dextran chemistry and can thus be regarded as an interesting alternative. The sensor interface can be reused several times due to the easy regeneration step using ethylenediaminetetraacetic acid (EDTA) treatment.


Subject(s)
Chelating Agents/chemistry , Histidine/chemistry , Metals/chemistry , Peptides/chemistry , Surface Plasmon Resonance/methods , Amines/chemistry , Amino Acid Sequence , Bradykinin/chemistry , Bradykinin/metabolism , Immobilized Proteins/chemistry , Immobilized Proteins/metabolism , Molecular Sequence Data , Nitrilotriacetic Acid/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...