Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Indian J Med Res ; 143(1): 43-8, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26997013

ABSTRACT

BACKGROUND & OBJECTIVES: ATRX is a recessive X-linked intellectual deficiency (X-LID) gene causing predominately alpha-thalassaemia with a wide and clinically heterogeneous spectrum of intellectual deficiency syndromes. Although alpha-thalassaemia is commonly present, some patients do not express this sign despite the ATRX gene being altered. Most pathological mutations have been localized in two different major domains, the helicase and the plant homeo-domain (PHD)-like domain. In this study we examined a family of three males having an X-linked mental deficiency and developmental delay, and tried to establish a genetic diagnosis while discussing and comparing the phenotype of our patients to those reported in the literature. METHODS: Three related males with intellectual deficiency underwent clinical investigations. We performed a karyotype analysis, CGH-array, linkage study, and X-exome sequencing in the index case to identify the genetic origin of this disorder. The X-inactivation study was carried out in the mother and Sanger sequencing was achieved in all family members to confirm the mutation. RESULTS: a0 novel ATRX gene missense mutation (p.His2247Pro) was identified in a family of two uncles and their nephew manifesting intellectual deficiency and specific facial features without alpha-thalassaemia. The mutation was confirmed by Sanger sequencing. It segregated with the pathological phenotype. The mother and her two daughters were found to be heterozygous. INTERPRETATION & CONCLUSIONS: The novel mutation c.6740A>C was identified within the ATRX gene helicase domain and confirmed by Sanger sequencing in the three affected males as well as in the mother and her two daughters. This mutation was predicted to be damaging and deleterious. The novel mutation segregated with the phenotype without alpha-thalassaemia and with non-skewed X chromosome.


Subject(s)
DNA Helicases/genetics , Intellectual Disability/genetics , Mental Retardation, X-Linked/genetics , Nuclear Proteins/genetics , Exome/genetics , High-Throughput Nucleotide Sequencing , Humans , Intellectual Disability/physiopathology , Male , Mental Retardation, X-Linked/physiopathology , Mutation, Missense , Pedigree , Phenotype , X Chromosome Inactivation/genetics , X-linked Nuclear Protein , alpha-Thalassemia/genetics , alpha-Thalassemia/physiopathology
2.
Clin Case Rep ; 3(7): 604-9, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26273451

ABSTRACT

X-linked intellectual deficiency (XLID) is a large group of genetic disorders. MED12 gene causes syndromic and nonsyndromic forms of XLID. Only seven pathological mutations have been identified in this gene. Here, we report a novel mutation segregating with XLID phenotype. This mutation could be in favor of genotype-phenotype correlations.

3.
J Androl ; 33(6): 1352-9, 2012.
Article in English | MEDLINE | ID: mdl-22492842

ABSTRACT

For nonobstructive azoospermic (NOA) patients with a normal karyotype or for Klinefelter syndrome (47,XXY) patients, intracytoplasmic sperm injection is associated with an increased aneuploidy risk in offspring. We examined testicular cells from patients with different azoospermia etiologies to determine the origin of the aneuploid spermatozoa. The incidence of chromosome abnormalities was investigated in all types of azoospermia. Four study subgroups were constituted: Klinefelter patients (group 1), NOA patients with spermatogenesis failure but a normal karyotype (group 2), obstructive azoospermic patients with normal spermatogenesis (group 3), and control patients with normal sperm (group 4). The pachytene stage (in the three azoospermic groups) and postmeiotic cells (in all groups) were analyzed with fluorescence in situ hybridization. No aneuploid pachytene spermatocytes were observed. Postmeiotic aneuploidy rates were higher in the two groups with spermatogenesis failure (5.3% and 4.0% for groups 1 and 2, respectively) than in patients with normal spermatogenesis (0.6% for group 3 and group 4). Whatever the etiology of the azoospermia, the spermatozoa originated from euploid pachytene spermatocytes. These results strengthen the hypothesis whereby sperm aneuploidy in both Klinefelter patients and NOA patients with a normal karyotype results from meiotic abnormalities and not from aneuploid spermatocytes. The fact that sperm aneuploidy was more frequent when spermatogenesis was altered suggests a deleterious testicular environment. The study results also provide arguments for offering preimplantation genetic diagnosis or prenatal diagnosis when a pregnancy occurs for fathers with NOA (whatever the karyotype).


Subject(s)
Aneuploidy , Azoospermia/genetics , Spermatocytes/cytology , Spermatozoa/abnormalities , Adult , Humans , In Situ Hybridization, Fluorescence , Klinefelter Syndrome/genetics , Male , Meiosis , Middle Aged , Sperm Injections, Intracytoplasmic
SELECTION OF CITATIONS
SEARCH DETAIL
...