Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37961411

ABSTRACT

COPD causes significant morbidity and mortality worldwide. Epithelial damage is fundamental to disease pathogenesis, although the mechanisms driving disease remain undefined. Published evidence from a COPD cohort (SPIROMICS) and confirmed in a second cohort (COPDgene) demonstrate a polymorphism in Fucosyltransferese-2 (FUT2) is a trans-pQTL for E-cadherin, which is critical in COPD pathogenesis. We found by MALDI-TOF analysis that FUT2 increased terminal fucosylation of E-cadherin. Using atomic force microscopy, we found that FUT2-dependent fucosylation enhanced E-cadherin-E-cadherin bond strength, mediating the improvement in monolayer integrity. Tracheal epithelial cells from Fut2-/- mice have reduced epithelial integrity, which is recovered with reconstitution of Fut2. Overexpression of FUT2 in COPD derived epithelia rescues barrier function. Fut2-/- mice show increased susceptibility in an elastase model of disease developing both emphysema and fibrosis. We propose this is due to the role of FUT2 in proliferation and cell differentiation. Overexpression of FUT2 significantly increased proliferation. Loss of Fut2 results in accumulation of Spc+ cells suggesting a failure of alveolar type 2 cells to undergo transdifferentiation to alveolar type 1. Using a combination of population data, genetically manipulated mouse models, and patient-derived cells, we present a novel mechanism by which post-translational modifications modulate tissue pathology and serve as a proof of concept for the development of a disease-modifying target in COPD.

2.
Nat Commun ; 12(1): 2343, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33879788

ABSTRACT

In healthy joints, synovial fibroblasts (SFs) provide the microenvironment required to mediate homeostasis, but these cells adopt a pathological function in rheumatoid arthritis (RA). Carbohydrates (glycans) on cell surfaces are fundamental regulators of the interactions between stromal and immune cells, but little is known about the role of the SF glycome in joint inflammation. Here we study stromal guided pathophysiology by mapping SFs glycosylation pathways. Combining transcriptomic and glycomic analysis, we show that transformation of fibroblasts into pro-inflammatory cells is associated with glycan remodeling, a process that involves TNF-dependent inhibition of the glycosyltransferase ST6Gal1 and α2-6 sialylation. SF sialylation correlates with distinct functional subsets in murine experimental arthritis and remission stages in human RA. We propose that pro-inflammatory cytokines remodel the SF-glycome, converting the synovium into an under-sialylated and highly pro-inflammatory microenvironment. These results highlight the importance of glycosylation in stromal immunology and joint inflammation.


Subject(s)
Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Sialic Acids/metabolism , Synovial Membrane/metabolism , Synovial Membrane/pathology , Animals , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/immunology , Cell Line , Cytokines/metabolism , Down-Regulation , Fibroblasts/immunology , Fibroblasts/metabolism , Fibroblasts/pathology , Glycosylation , Humans , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Male , Metabolic Networks and Pathways , Mice , Mice, Inbred DBA , Phenotype , RNA-Seq , Sialyltransferases/genetics , Sialyltransferases/metabolism , Synovial Membrane/immunology , Transcriptome , beta-D-Galactoside alpha 2-6-Sialyltransferase
3.
PLoS One ; 16(3): e0248554, 2021.
Article in English | MEDLINE | ID: mdl-33765018

ABSTRACT

Mitochondrial dynamics is a possible modulator of myocardial ischemia/reperfusion injuries (IRI). We previously reported that mice partially deficient in the fusion protein OPA1 exhibited higher IRI. Therefore, we investigated whether deficiency in the fission protein DRP1 encoded by Dnm1l gene would affect IRI in Dnm1l+/- mouse. After baseline characterization of the Dnm1l+/- mice heart, using echocardiography, electron microscopy, and oxygraphy, 3-month-old Dnm1l+/- and wild type (WT) mice were exposed to myocardial ischemia/reperfusion (I/R). The ischemic area-at-risk (AAR) and area of necrosis (AN) were delimited, and the infarct size was expressed by AN/AAR. Proteins involved in mitochondrial dynamics and autophagy were analyzed before and after I/R. Mitochondrial permeability transition pore (mPTP) opening sensitivity was assessed after I/R. Heart weight and left ventricular function were not significantly different in 3-, 6- and 12-month-old Dnm1l+/- mice than in WT. The cardiac DRP1 protein expression levels were 60% lower, whereas mitochondrial area and lipid degradation were significantly higher in Dnm1l+/- mice than in WT, though mitochondrial respiratory parameters and mPTP opening did not significantly differ. Following I/R, the infarct size was significantly smaller in Dnm1l+/- mice than in WT (34.6±3.1% vs. 44.5±3.3%, respectively; p<0.05) and the autophagic markers, LC3 II and P62 were significantly increased compared to baseline condition in Dnm1l+/- mice only. Altogether, data indicates that increasing fusion by means of Dnm1l deficiency was associated with protection against IRI, without alteration in cardiac or mitochondrial functions at basal conditions. This protection mechanism due to DRP1 haploinsufficiency increases the expression of autophagic markers.


Subject(s)
Dynamins/physiology , Myocardial Reperfusion Injury/metabolism , Animals , Dynamins/genetics , Haploinsufficiency , Male , Mice , Mice, Knockout , Mitochondrial Dynamics
4.
Int J Mol Sci ; 20(22)2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31731663

ABSTRACT

Synonymous variants within coding regions may influence protein expression and function. We have previously reported increased protein expression levels ex vivo (~120% in comparison to wild-type) from a synonymous polymorphism variant, c.354G>A [p.P118P], of the ADAMTS13 gene, encoding a plasma protease responsible for von Willebrand Factor (VWF) degradation. In the current study, we investigated the potential mechanism(s) behind the increased protein expression levels from this variant and its effect on ADAMTS13 physico-chemical properties. Cell-free assays showed enhanced translation of the c.354G>A variant and the analysis of codon usage characteristics suggested that introduction of the frequently used codon/codon pair(s) may have been potentially responsible for this effect. Limited proteolysis, however, showed no substantial influence of altered translation on protein conformation. Analysis of post-translational modifications also showed no notable differences but identified three previously unreported glycosylation markers. Despite these similarities, p.P118P variant unexpectedly showed higher specific activity. Structural analysis using modeled interactions indicated that subtle conformational changes arising from altered translation kinetics could affect interactions between an exosite of ADAMTS13 and VWF resulting in altered specific activity. This report highlights how a single synonymous nucleotide variation can impact cellular expression and specific activity in the absence of measurable impact on protein structure.


Subject(s)
ADAMTS13 Protein/genetics , Circular Dichroism , HEK293 Cells , Humans , Mass Spectrometry , Protein Processing, Post-Translational , Ribosomes/genetics , Ribosomes/metabolism
5.
J Biol Chem ; 293(47): 18123-18137, 2018 11 23.
Article in English | MEDLINE | ID: mdl-30275012

ABSTRACT

Clostridium difficile is a bacterial pathogen that causes major health challenges worldwide. It has a well-characterized surface (S)-layer, a para-crystalline proteinaceous layer surrounding the cell wall. In many bacterial and archaeal species, the S-layer is glycosylated, but no such modifications have been demonstrated in C. difficile. Here, we show that a C. difficile strain of S-layer cassette type 11, Ox247, has a complex glycan attached via an O-linkage to Thr-38 of the S-layer low-molecular-weight subunit. Using MS and NMR, we fully characterized this glycan. We present evidence that it is composed of three domains: (i) a core peptide-linked tetrasaccharide with the sequence -4-α-Rha-3-α-Rha-3-α-Rha-3-ß-Gal-peptide; (ii) a repeating pentasaccharide with the sequence -4-ß-Rha-4-α-Glc-3-ß-Rha-4-(α-Rib-3-)ß-Rha-; and (iii) a nonreducing end-terminal 2,3 cyclophosphoryl-rhamnose attached to a ribose-branched sub-terminal rhamnose residue. The Ox247 genome contains a 24-kb locus containing genes for synthesis and protein attachment of this glycan. Mutations in genes within this locus altered or completely abrogated formation of this glycan, and their phenotypes suggested that this S-layer modification may affect sporulation, cell length, and biofilm formation of C. difficile In summary, our findings indicate that the S-layer protein of SLCT-11 strains displays a complex glycan and suggest that this glycan is required for C. difficile sporulation and control of cell shape, a discovery with implications for the development of antimicrobials targeting the S-layer.


Subject(s)
Clostridioides difficile/metabolism , Membrane Glycoproteins/metabolism , Polysaccharides/metabolism , Spores, Bacterial/growth & development , Clostridioides difficile/genetics , Clostridioides difficile/growth & development , Glycosylation , Mass Spectrometry , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/genetics , Molecular Weight , Polysaccharides/chemistry , Protein Conformation , Spores, Bacterial/genetics , Spores, Bacterial/metabolism
6.
J Biol Chem ; 291(49): 25439-25449, 2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27758867

ABSTRACT

Glycosylation of flagellins is a well recognized property of many bacterial species. In this study, we describe the structural characterization of novel flagellar glycans from a number of hypervirulent strains of C. difficile We used mass spectrometry (nano-LC-MS and MS/MS analysis) to identify a number of putative glycopeptides that carried a variety of glycoform substitutions, each of which was linked through an initial N-acetylhexosamine residue to Ser or Thr. Detailed analysis of a LLDGSSTEIR glycopeptide released by tryptic digestion, which carried two variant structures, revealed that the glycopeptide contained, in addition to carbohydrate moieties, a novel structural entity. A variety of electrospray-MS strategies using Q-TOF technology were used to define this entity, including positive and negative ion collisionally activated decomposition MS/MS, which produced unique fragmentation patterns, and high resolution accurate mass measurement to allow derivation of atomic compositions, leading to the suggestion of a taurine-containing peptidylamido-glycan structure. Finally, NMR analysis of flagellin glycopeptides provided complementary information. The glycan portion of the modification was assigned as α-Fuc3N-(1→3)-α-Rha-(1→2)-α-Rha3OMe-(1→3)-ß-GlcNAc-(1→)Ser, and the novel capping moiety was shown to be comprised of taurine, alanine, and glycine. This is the first report of a novel O-linked sulfonated peptidylamido-glycan moiety decorating a flagellin protein.


Subject(s)
Clostridioides difficile/chemistry , Flagellin/chemistry , Polysaccharides, Bacterial/chemistry , Clostridioides difficile/metabolism , Clostridioides difficile/pathogenicity , Flagellin/metabolism , Glycosylation , Nuclear Magnetic Resonance, Biomolecular , Polysaccharides, Bacterial/metabolism
7.
J Biol Chem ; 291(49): 25450-25461, 2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27703012

ABSTRACT

Clostridium difficile is the principal cause of nosocomial infectious diarrhea worldwide. The pathogen modifies its flagellin with either a type A or type B O-linked glycosylation system, which has a contributory role in pathogenesis. We study the functional role of glycosyltransferases modifying type B flagellin in the 023 and 027 hypervirulent C. difficile lineages by mutagenesis of five putative glycosyltransferases and biosynthetic genes. We reveal their roles in the biosynthesis of the flagellin glycan chain and demonstrate that flagellar post-translational modification affects motility and adhesion-related bacterial properties of these strains. We show that the glycosyltransferases 1 and 2 (GT1 and GT2) are responsible for the sequential addition of a GlcNAc and two rhamnoses, respectively, and that GT3 is associated with the incorporation of a novel sulfonated peptidyl-amido sugar moiety whose structure is reported in our accompanying paper (Bouché, L., Panico, M., Hitchen, P., Binet, D., Sastre, F., Faulds-Pain, A., Valiente, E., Vinogradov, E., Aubry, A., Fulton, K., Twine, S., Logan, S. M., Wren, B. W., Dell, A., and Morris, H. R. (2016) J. Biol. Chem. 291, 25439-25449). GT2 is also responsible for methylation of the rhamnoses. Whereas type B modification is not required for flagellar assembly, some mutations that result in truncation or abolition of the glycan reduce bacterial motility and promote autoaggregation and biofilm formation. The complete lack of flagellin modification also significantly reduces adhesion of C. difficile to Caco-2 intestinal epithelial cells but does not affect activation of human TLR5. Our study advances our understanding of the genes involved in flagellar glycosylation and their biological roles in emerging hypervirulent C. difficile strains.


Subject(s)
Bacterial Adhesion/physiology , Biofilms/growth & development , Clostridioides difficile/physiology , Flagellin/metabolism , Glycosyltransferases/metabolism , Caco-2 Cells , Clostridioides difficile/pathogenicity , Flagellin/genetics , Glycosylation , Humans , Toll-Like Receptor 5/metabolism
8.
Sci Rep ; 6: 32956, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27604319

ABSTRACT

The surface envelope glycoprotein (SU) of Human immunodeficiency virus type 1 (HIV-1), gp120(SU) plays an essential role in virus binding to target CD4+ T-cells and is a major vaccine target. Gp120 has remarkably high levels of N-linked glycosylation and there is considerable evidence that this "glycan shield" can help protect the virus from antibody-mediated neutralization. In recent years, however, it has become clear that gp120 glycosylation can also be included in the targets of recognition by some of the most potent broadly neutralizing antibodies. Knowing the site-specific glycosylation of gp120 can facilitate the rational design of glycopeptide antigens for HIV vaccine development. While most prior studies have focused on glycan analysis of recombinant forms of gp120, here we report the first systematic glycosylation site analysis of gp120 derived from virions produced by infected T lymphoid cells and show that a single site is exclusively substituted with complex glycans. These results should help guide the design of vaccine immunogens.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp120/immunology , HIV-1/genetics , HIV-1/immunology , Amino Acid Sequence , Antibodies, Neutralizing/metabolism , Antigen-Antibody Reactions , Binding Sites , Carbohydrate Sequence , Cell Line , Genome, Viral , Glycosylation , HIV Antibodies/metabolism , HIV Envelope Protein gp120/chemistry , HIV-1/chemistry , Humans , Oligosaccharides/chemistry , Oligosaccharides/immunology , Polysaccharides/chemistry , Polysaccharides/immunology , Protein Binding , Protein Structure, Secondary , Proteome/chemistry , Proteome/genetics , Proteome/immunology , Proteomics
9.
PLoS One ; 10(4): e0124784, 2015.
Article in English | MEDLINE | ID: mdl-25915761

ABSTRACT

As HIV-1-encoded envelope protein traverses the secretory pathway, it may be modified with N- and O-linked carbohydrate. When the gp120s of HIV-1 NL4-3, HIV-1 YU2, HIV-1 Bal, HIV-1 JRFL, and HIV-1 JRCSF were expressed as secreted proteins, the threonine at consensus position 499 was found to be O-glycosylated. For SIVmac239, the corresponding threonine was also glycosylated when gp120 was recombinantly expressed. Similarly-positioned, highly-conserved threonines in the influenza A virus H1N1 HA1 and H5N1 HA1 envelope proteins were also found to carry O-glycans when expressed as secreted proteins. In all cases, the threonines were modified predominantly with disialylated core 1 glycans, together with related core 1 and core 2 structures. Secreted HIV-1 gp140 was modified to a lesser extent with mainly monosialylated core 1 O-glycans, suggesting that the ectodomain of the gp41 transmembrane component may limit the accessibility of Thr499 to glycosyltransferases. In striking contrast to these findings, gp120 on purified virions of HIV-1 Bal and SIV CP-MAC lacked any detectable O-glycosylation of the C-terminal threonine. Our results indicate the absence of O-linked carbohydrates on Thr499 as it exists on the surface of virions and suggest caution in the interpretation of analyses of post-translational modifications that utilize recombinant forms of envelope protein.


Subject(s)
Carbohydrates/chemistry , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/genetics , Threonine/chemistry , HEK293 Cells , HIV-1/chemistry , HIV-1/genetics , HIV-1/metabolism , HeLa Cells , Humans , Influenza A virus/chemistry , Influenza A virus/metabolism , Membrane Glycoproteins/chemistry , Protein Processing, Post-Translational , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Viral Envelope Proteins/chemistry , Virion/chemistry , Virion/genetics , Virion/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...