Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Front Chem ; 11: 1132233, 2023.
Article in English | MEDLINE | ID: mdl-36936535

ABSTRACT

Rapid advancement in nanotechnology has led to the development of a myriad of useful nanomaterials that have novel characteristics resulting from their small size and engineered properties. In particular, two-dimensional (2D) materials have become a major focus in material science and chemistry research worldwide with substantial efforts centered on their synthesis, property characterization, and technological, and environmental applications. Environmental applications of these nanomaterials include but are not limited to adsorbents for wastewater and drinking water treatment, membranes for desalination, and coating materials for filtration. However, it is also important to address the environmental interactions and implications of these nanomaterials in order to develop strategies that minimize their environmental and public health risks. Towards this end, this review covers the most recent literature on the environmental implementations of emerging 2D nanomaterials, thereby providing insights into the future of this fast-evolving field including strategies for ensuring sustainable development of 2D nanomaterials.

2.
Environ Model Softw ; 111: 444-458, 2019.
Article in English | MEDLINE | ID: mdl-31297031

ABSTRACT

Toxicant concentrations in surface waters are of environmental concern due to their potential impacts to humans and wildlife. Numerical models provide system insight, support management decisions, and provide scenario testing on the impacts of toxicants. The Water Quality Analysis Simulation Program (WASP) is a widely used framework for developing site-specific models for simulating toxicant concentrations in surface waters and sediments over a range of complexities and temporal and spatial scales. WASP8, with the Advanced Toxicant module, has been recently released, incorporating a complete architecture redesign for an increased number of state variables and different state variable types. WASP8 incorporates a new structure for simulating light intensity and photoreactions in the water column, including the distinction of 10 different wavelength bands, and nanoparticle heteroaggregation to solids. We present a hypothetical case study, using the Cape Fear River, North Carolina as a representative example for simulating solute chemicals, nanoparticles, and solids to demonstrate the new and updated capabilities of WASP8.

3.
Environ Sci Nano ; 6(1): 180-194, 2019.
Article in English | MEDLINE | ID: mdl-31297195

ABSTRACT

The production of graphene-family nanomaterials (GFNs) has increased appreciably in recent years. Graphene oxide (GO) has been found to be the most toxic nanomaterial among GFNs and, to our knowledge, no studies have been conducted to model its fate and transport in the environment. Lab studies show that GO undergoes phototransformation in surface waters under sunlight radiation resulting in formation of photoreduced GO (rGO). In this study, the recently updated Water Quality Analysis Simulation Program (WASP8) is used to simulate time-dependent environmental exposure concentrations of GO and its major phototransformation product, rGO, for Brier Creek, GA, USA at two flow scenarios under a constant loading of GO to the river for a period of 20 years. Analysis shows that the degree of phototransformation is closely associated with river flow condition: up to of 40% of GO undergoes phototransformation at low flow condition, whereas only 2.5% of GO phototransformation occurs at mean flow condition. River flow and heteroaggregation exhibit a 'competing' effect in determining the formation of rGO heteroagglomerates. Mass fraction analysis indicates that the vast majority of rGO heteroagglomerates settle to the sediment layers due to the settling of suspended solids. Simulation of natural recovery after removal of the GO source suggests that free GO and rGO are the immediate contaminants of concern in the studied surface water system, while rGO heteroaggregated with suspended solids can have a long-term ecological impact on both the water column and sediments.

4.
NanoImpact ; 13: 1-12, 2019.
Article in English | MEDLINE | ID: mdl-31297468

ABSTRACT

The industrial use and widespread application of carbon-based nanomaterials have caused a rapid increase in their production over the last decades. However, toxicity of these materials is not fully known and is still being investigated for potential human and ecological health risks. Detecting carbon-based nanomaterials in the environment using current analytical methods is problematic, making environmental fate and transport modeling a practical way to estimate environmental concentrations and assess potential ecological risks. The Water Quality Analysis Simulation Program 8 (WASP8) is a dynamic, spatially resolved fate and transport model for simulating exposure concentrations in surface waters and sediments. Recently, WASP has been updated to incorporate processes for simulating the fate and transport of nanomaterials including heteroaggregation and phototransformation. This study examines the fate and transport of multiwalled carbon nanotubes (MWCNT), graphene oxide (GO) and reduced graphene oxide (rGO) in four aquatic ecosystems in the southeastern United States. Sites include a seepage lake, a coastal plains river, a piedmont river and an unstratified, wetland lake. A hypothetical 50-year release is simulated for each site-nanomaterial pair to analyze nanomaterial distribution between the water column and sediments. For all nanomaterials, 99% of the mass loaded moves though systems of high and low residence times without being heteroaggregated and deposited in the sediments. However, significant accumulation in the sediments does occur over longer periods of time. Results show that GO and rGO had the highest mass fraction in the water column of all four sites. MWCNT were found predominantly in the sediments of the piedmont river and seepage lake but were almost entirely contained in the water column of the coastal plains river and wetland lake. Simulated recovery periods following the release estimate 37+ years for lakes and 1-4 years for rivers to reduce sediment nanomaterial concentrations by 50% suggesting that carbon-based nanomaterials have the potential for long-term ecological effects.

5.
Environ Chem ; 16(6): 482-493, 2019 May 22.
Article in English | MEDLINE | ID: mdl-34316290

ABSTRACT

Because carbonaceous nanomaterials (CNMs) are expected to enter soils, the exposure implications to crop plants and plant-microbe interactions should be understood. Most investigations have been under ideal growth conditions, yet crops commonly experience abiotic and biotic stresses. Little is known how co-exposure to these environmental stresses and CNMs would cause combined effects on plants. We investigated the effects of 1000 mg kg-1 multiwalled carbon nanotubes (CNTs), graphene nanoplatelets (GNPs) and industrial carbon black (CB) on soybeans grown to the bean production stage in soil. Following seed sowing, plants became stressed by heat and infested with an insect (thrips). Consequently, all plants had similarly stunted growth, leaf damage, reduced final biomasses and fewer root nodules compared with healthy control soybeans previously grown without heat and thrips stresses. Thus, CNMs did not significantly influence the growth and yield of stressed soybeans, and the previously reported nodulation inhibition by CNMs was not specifically observed here. However, CNMs did significantly alter two leaf health indicators: the leaf chlorophyll a/b ratio, which was higher in the GNP treatment than in either the control (by 15 %) or CB treatment (by 14 %), and leaf lipid peroxidation, which was elevated in the CNT treatment compared with either the control (by 47 %) or GNP treatment (by 66 %). Overall, these results show that, while severe environmental stresses may impair plant production, CNMs (including CNTs and GNPs) in soil could additionally affect foliar health of an agriculturally important legume.

6.
Environ Sci Technol ; 51(19): 11174-11184, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-28876918

ABSTRACT

Under the Toxic Substances Control Act (TSCA), the Environmental Protection Agency (EPA) is required to perform new chemical reviews of nanomaterials identified in premanufacture notices. However, environmental fate models developed for traditional contaminants are limited in their ability to simulate nanomaterials' environmental behavior by incomplete understanding and representation of the processes governing nanomaterial distribution in the environment and by scarce empirical data quantifying the interaction of nanomaterials with environmental surfaces. In this study, the well-known Water Quality Analysis Simulation Program (WASP) was updated to incorporate particle collision rate and particle attachment efficiency to simulate multiwalled carbon nanotube (MWCNT) fate and transport in surface waters. Heteroaggregation attachment efficiencies (αhet) values derived from sediment attachment studies are used to parametrize WASP for simulation of MWCNTs transport in Brier Creek, a coastal plain river located in central eastern Georgia, and a tributary to the Savannah River. Simulations using a constant MWCNT load of 0.1 kg d-1 in the uppermost Brier Creek water segment showed that MWCNTs were present predominantly in the Brier Creek water column, while downstream MWCNT surface and deep sediment concentrations exhibited a general increase with time and distance from the source, suggesting that MWCNT releases could have increasing ecological impacts in the benthic region over long time frames.


Subject(s)
Nanotubes, Carbon , Water Quality , Georgia , Models, Theoretical , Rivers
7.
Crit Rev Toxicol ; 47(9): 767-810, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28661217

ABSTRACT

Engineered nanomaterials (ENM) are a growing aspect of the global economy, and their safe and sustainable development, use, and eventual disposal requires the capability to forecast and avoid potential problems. This review provides a framework to evaluate the health and safety implications of ENM releases into the environment, including purposeful releases such as for antimicrobial sprays or nano-enabled pesticides, and inadvertent releases as a consequence of other intended applications. Considerations encompass product life cycles, environmental media, exposed populations, and possible adverse outcomes. This framework is presented as a series of compartmental flow diagrams that serve as a basis to help derive future quantitative predictive models, guide research, and support development of tools for making risk-based decisions. After use, ENM are not expected to remain in their original form due to reactivity and/or propensity for hetero-agglomeration in environmental media. Therefore, emphasis is placed on characterizing ENM as they occur in environmental or biological matrices. In addition, predicting the activity of ENM in the environment is difficult due to the multiple dynamic interactions between the physical/chemical aspects of ENM and similarly complex environmental conditions. Others have proposed the use of simple predictive functional assays as an intermediate step to address the challenge of using physical/chemical properties to predict environmental fate and behavior of ENM. The nodes and interactions of the framework presented here reflect phase transitions that could be targets for development of such assays to estimate kinetic reaction rates and simplify model predictions. Application, refinement, and demonstration of this framework, along with an associated knowledgebase that includes targeted functional assay data, will allow better de novo predictions of potential exposures and adverse outcomes.


Subject(s)
Ecotoxicology/methods , Environmental Health , Environmental Pollutants/toxicity , Nanostructures/toxicity , Humans , Models, Theoretical , Risk Assessment , Safety
8.
ACS Nano ; 11(6): 5753-5765, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28549216

ABSTRACT

The potential effects of carbonaceous nanomaterials (CNMs) on agricultural plants are of concern. However, little research has been performed using plants cultivated to maturity in soils contaminated with various CNMs at different concentrations. Here, we grew soybean for 39 days to seed production in soil amended with 0.1, 100, or 1000 mg kg-1 of either multiwalled carbon nanotubes (MWCNTs), graphene nanoplatelets (GNPs), or carbon black (CB) and studied plant growth, nodulation, and dinitrogen (N2) fixation potential. Plants in all CNM treatments flowered earlier (producing 60% to 372% more flowers when reproduction started) than the unamended controls. The low MWCNT-treated plants were shorter (by 15%) with slower leaf cover expansion (by 26%) and less final leaf area (by 24%) than the controls. Nodulation and N2 fixation potential appeared negatively impacted by CNMs, with stronger effects at lower CNM concentrations. All CNM treatments reduced the whole-plant N2 fixation potential, with the highest reductions (by over 91%) in the low and medium CB and the low MWCNT treatments. CB and GNPs appeared to accumulate inside nodules as observed by transmission electron microscopy. CNM dispersal in aqueous soil extracts was studied to explain the inverse dose-response relationships, showing that CNMs at higher concentrations were more agglomerated (over 90% CNMs settled as agglomerates >3 µm after 12 h) and therefore proportionally less bioavailable. Overall, our findings suggest that lower concentrations of CNMs in soils could be more impactful to leguminous N2 fixation, owing to greater CNM dispersal and therefore increased bioavailability at lower concentrations.


Subject(s)
Glycine max/growth & development , Graphite/analysis , Nanostructures/analysis , Nanotubes, Carbon/analysis , Soil Pollutants/analysis , Soot/analysis , Graphite/metabolism , Nanostructures/ultrastructure , Nanotubes, Carbon/ultrastructure , Nitrogen Fixation , Plant Root Nodulation , Soil Pollutants/metabolism , Soot/metabolism , Glycine max/physiology
9.
Environ Sci Technol ; 50(17): 9214-22, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27500910

ABSTRACT

Sodium dodecyl sulfate (SDS) facilitates multiwalled carbon nanotube (MWCNT) debundling and enhances nanotube stability in the aqueous environment by adsorbing on the nanotube surfaces, thereby increasing repulsive electrostatic forces and steric effects. The resulting SDS-wrapped MWCNTs are utilized in industrial applications and have been widely employed in environmental studies. In the present study, MWCNTs adsorbed SDS during ultrasonication to form stable MWCNTs suspensions. Desorption of SDS from MWCNTs surfaces was then investigated as a function of Suwannee River Humic Acid (SRHA) and background electrolyte concentrations. Due to hydrophobic effects and π-π interactions, MWCNTs exhibit higher affinity for SRHA than SDS. In the presence of SRHA, SDS adsorbed on MWCNTs was displaced. Cations (Na(+), Ca(2+)) decreased SDS desorption from MWCNTs due to charge screening effects. Interestingly, the presence of the divalent calcium cation facilitated multilayered SRHA adsorption on MWCNTs through bridging effects, while monovalent sodium reduced SRHA adsorption. Results of the present study suggest that properties of MWCNTs wrapped with commercial surfactants will be altered when these materials are released to surface waters and the surfactant coating will be displaced by natural organic matter (NOM). Changes on their surfaces will significantly affect MWCNTs fate in aquatic environments.


Subject(s)
Humic Substances , Nanotubes, Carbon/chemistry , Adsorption , Sodium Dodecyl Sulfate/chemistry , Surface-Active Agents/chemistry
10.
Sci Total Environ ; 565: 777-786, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27216968

ABSTRACT

Carbon nanotubes (CNTs) have great potential in industrial, consumer, and mechanical applications, based partly on their unique structural, optical and electronic properties. CNTs are commonly oxidized or treated with surfactants to facilitate aqueous solution processing, and these CNT surface modifications also increase possible human and ecological exposures to nanoparticle-contaminated waters. To determine the exposure outcomes of oxidized and surfactant-wrapped multiwalled carbon nanotubes (MWCNTs) on biochemical processes, metabolomics-based profiling of human liver cells (C3A) was utilized. Cells were exposed to 0, 10, or 100ng/mL of MWCNTs for 24 and 48h; MWCNT particle size distribution, charge, and aggregation were monitored concurrently during exposures. Following MWCNT exposure, cellular metabolites were extracted, lyophilized, and buffered for (1)H NMR analysis. Acquired spectra were subjected to both multivariate and univariate analysis to determine the consequences of nanotube exposure on the metabolite profile of C3A cells. Resulting scores plots illustrated temporal and dose-dependent metabolite responses to all MWCNTs tested. Loadings plots coupled with t-test filtered spectra identified metabolites of interest. XPS analysis revealed the presence of hydroxyl and carboxyl functionalities on both MWCNTs surfaces. Metal content analysis by ICP-AES indicated that the total mass concentration of the potentially toxic impurities in the exposure experiments were extremely low (i.e. [Ni]≤2×10(-10)g/mL). Preliminary data suggested that MWCNT exposure causes perturbations in biochemical processes involved in cellular oxidation as well as fluxes in amino acid metabolism and fatty acid synthesis. Dose-response trajectories were apparent and spectral peaks related to both dose and MWCNT dispersion methodologies were determined. Correlations of the significant changes in metabolites will help to identify potential biomarkers associated with carbonaceous nanoparticle exposure.


Subject(s)
Biomarkers/analysis , Environmental Exposure , Nanotubes, Carbon/toxicity , Environmental Monitoring , Hep G2 Cells , Humans , Metabolome , Nanotubes, Carbon/chemistry , Oxidation-Reduction , Particle Size , Spectrophotometry, Atomic , Surface-Active Agents/chemistry
11.
Environ Sci Technol ; 49(18): 10886-93, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26280799

ABSTRACT

The aggregation and stability of graphene oxide (GO) and three successively reduced GO (rGO) nanomaterials were investigated. Reduced GO species were partially reduced GO (rGO-1h), intermediately reduced GO (rGO-2h), and fully reduced GO (rGO-5h). Specifically, influence of pH, ionic strength, ion valence, and presence of natural organic matter (NOM) were studied. Results show that stability of GO in water decreases with successive reduction of functional groups, with pH having the greatest influence on rGO stability. Stability is also dependent on ion valence and the concentration of surface functional groups. While pH did not noticeably affect stability of GO in the presence of 10 mM NaCl, adding 0.1 mM CaCl2 reduced stability of GO with increased pH. This is due to adsorption of Ca(2+) ions on the surface functional groups of GO which reduces the surface charge of GO. As the concentration of rGO functional groups decreased, so did the influence of Ca(2+) ions on rGO stability. Critical coagulation concentrations (CCC) of GO, rGO-1h, and rGO-2h were determined to be ∼ 200 mM, 35 mM, and 30 mM NaCl, respectively. In the presence of CaCl2, CCC values of GO and rGO are quite similar, however. Long-term studies show that a significant amount of rGO-1h and rGO-2h remain stable in Call's Creek surface water, while effluent wastewater readily destabilizes rGO. In the presence NOM and divalent cations (Ca(2+), Mg(2+)), GO aggregates settle from suspension due to GO functional group bridging with NOM and divalent ions. However, rGO-1h and rGO-2h remain suspended due to their lower functional group concentration and resultant reduced NOM-divalent cation bridging. Overall, pH, divalent cations, and NOM can play complex roles in the fate of rGO and GO.


Subject(s)
Graphite/chemistry , Nanostructures/chemistry , Adsorption , Cations, Divalent/chemistry , Hydrogen-Ion Concentration , Osmolar Concentration , Oxidation-Reduction , Oxides/chemistry , Sodium Chloride , Water , Water Pollutants, Chemical
12.
Water Res ; 78: 37-46, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25898251

ABSTRACT

In this study, we investigate the role of simulated sunlight on the physicochemical properties, aggregation, and deposition of graphene oxide (GO) in aquatic environments. Results show that light exposure under varied environmental conditions significantly impacts the physicochemical properties and aggregation/deposition behaviors of GO. Photo-transformation has negligible effects on GO surface charge, however, GO aggregation rates increase with irradiation time for direct photo-transformation under both aerobic and anaerobic conditions. Under anaerobic conditions, photo-reduced GO has a greater tendency to form aggregates than under aerobic conditions. Aggregation of photo-transformed GO is notably influenced by ion valence, with higher aggregation found in the presence of divalent ions versus monovalent, but adding natural organic matter (NOM) reduces it. QCM-D studies show that deposition of GO on surfaces coated with organic matter decreases with increased GO irradiation time, indicating a potential increase in GO mobility due to photo-transformation. General deposition trends on Suwannee River Humic Acid (SRHA)-coated surfaces are control GO > aerobically photo-transformed GO ≈ anaerobically photo-transformed GO. The release of deposited GO from SRHA-coated surfaces decreases with increased irradiation time, indicating that photo-transformed GO is strongly attached to the NOM-coated surface.


Subject(s)
Graphite/radiation effects , Nanostructures/chemistry , Sunlight , Water Pollutants, Chemical/chemistry , Aerobiosis , Anaerobiosis , Biodegradation, Environmental , Graphite/chemistry , Humic Substances , Kinetics , Oxides/chemistry , Oxides/radiation effects , Surface Properties , Water Pollutants, Chemical/radiation effects
13.
Environ Sci Technol ; 49(11): 6645-53, 2015 Jun 02.
Article in English | MEDLINE | ID: mdl-25924000

ABSTRACT

To systematically evaluate how dispersion methods affect the environmental behaviors of multiwalled carbon nanotubes (MWNTs), MWNTs were dispersed in various solutions (e.g., surfactants, natural organic matter (NOM), and etc.) via ultrasonication (SON) and long-term stirring (LT). The two tested surfactants [anionic sodium dodecyl sulfate (SDS) and nonionic poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) (PEO-PPO-PEO) triblock copolymers (Pluronic)] could only disperse MWNTs via ultrasonication; while stable aqueous SON/MWNT and LT/MWNT suspensions were formed in the presence of the two model NOMs (Suwannee river humic acid and fulvic acid). Due to the inherent stochastic nature for both methods, the formed MWNT suspensions were highly heterogeneous. Their physicochemical properties, including surface charge, size, and morphology, greatly depended upon the dispersant type and concentration but were not very sensitive to the preparation methods. Aggregation and deposition behaviors of the dispersed MWNTs were controlled by van der Waal and electrostatic forces, as well as other non-DLVO forces (e.g., steric, hydrophobic forces, etc.). Unlike the preparation method-independent physicochemical properties, LT/NOM-MWNTs and SON/NOM-MWNTs differed in their fathead minnow epithelial cell metabolomics profiles.


Subject(s)
Biomarkers/analysis , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/toxicity , Water Pollutants, Chemical/chemistry , Animals , Biomarkers/metabolism , Cells, Cultured , Cyprinidae/metabolism , Ecotoxicology/methods , Humic Substances , Hydrophobic and Hydrophilic Interactions , Particle Size , Polyethylene Glycols/chemistry , Propylene Glycols/chemistry , Rivers/chemistry , Sodium Dodecyl Sulfate/chemistry , Solutions/chemistry , Static Electricity , Surface-Active Agents/chemistry , Water , Water Pollutants, Chemical/analysis
14.
Environ Sci Technol ; 49(6): 3435-43, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25671674

ABSTRACT

Graphene oxide (GO) is promising in scalable production and has useful properties that include semiconducting behavior, catalytic reactivity, and aqueous dispersibility. In this study, we investigated the photochemical fate of GO under environmentally relevant sunlight conditions. The results indicate that GO readily photoreacts under simulated sunlight with the potential involvement of electron-hole pair creation. GO was shown to photodisproportionate to CO2, reduced materials similar to reduced GO (rGO) that are fragmented compared to the starting material, and low molecular-weight (LMW) species. Kinetic studies show that the rate of the initially rapid photoreaction of GO is insensitive to the dissolved oxygen content. In contrast, at longer time points (>10 h), the presence of dissolved oxygen led to a greater production of CO2 than the same GO material under N2-saturated conditions. Regardless, the rGO species themselves persist after extended irradiation equivalent to 2 months in natural sunlight, even in the presence of dissolved oxygen. Overall, our findings indicate that GO phototransforms rapidly under sunlight exposure, resulting in chemically reduced and persistent photoproducts that are likely to exhibit transport and toxic properties unique from parent GO.


Subject(s)
Graphite/chemistry , Oxides/chemistry , Sunlight , Carbon Dioxide/chemistry , Kinetics , Photochemistry , Water/chemistry
15.
Colloids Surf B Biointerfaces ; 122: 778-784, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25194593

ABSTRACT

Human adenovirus (HAdV) is the most prevalent enteric virus found in the water environment by numerous monitoring studies and MS2 is the most common surrogate used for previous virus transport studies. However, the current knowledge on the transport behavior of HAdV in porous media and the transport relationship between HAdV and MS2 is very limited. In this study, we investigated the influence of ionic strength (IS) on the transport behaviors of HAdV, MS2, and pilus-associated MS2 (p-MS2) in saturated quartz sand columns. Retention of HAdV was higher than MS2 in all three IS (1, 10 and 100mM NaCl), especially in 10 and 100mM where virus recoveries in the effluent samples were ≤1% for HAdV, but ≥55% for MS2. Derjaguin and Landau, Verwey and Overbeek (DLVO) theory alone cannot explain why the deposition of HAdV was so much higher. HAdV retention may be strongly enhanced by attaching its long fibers to the sand surface and this deposition mechanism is supported by DLVO energy profiles which show that HAdV can approach the sand surface within reach of its fibers at 10 and 100mM NaCl. Results of transmission electron microscopy, dynamic light scattering and 0.05µm membrane filtration suggest that the majority of MS2 cultured by Escherichia coli Famp were associated with a residue of pili. Although retention of pilus-associated MS2 (p-MS2) in the column was just slightly higher than individual MS2 particles, membrane filtration results indicated potentially important differences between removal of MS2 and p-MS2 by filtration with finer pore sizes. This is the first study reporting (1) increasing differences in the transport of HAdV and MS2 in porous media with an increase in ionic strength; (2) significant influence of pilus-association to MS2 removal by membrane and porous media filtration; and (3) a mechanistic explanation for the deposition differences of HAdV and MS2 using virus morphology information and DLVO theory.


Subject(s)
Adenoviridae/physiology , Viral Proteins/metabolism , Humans , Microscopy, Electron, Transmission , Polymerase Chain Reaction , Porosity
16.
Environ Sci Technol ; 48(16): 9382-90, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25026416

ABSTRACT

Interactions of graphene oxide (GO) nanomaterials with natural organic matter (NOM) and metal oxide surfaces were investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Three different types of NOM were studied: Suwannee River humic and fulvic acids (SRHA and SRFA) and alginate. Aluminum oxide surface was used as a model metal oxide surface. Deposition trends show that GO has the highest attachment on alginate, followed by SRFA, SRHA, and aluminum oxide surfaces, and that GO displayed higher interactions with all investigated surfaces than with silica. Deposition and release behavior of GO on aluminum oxide surface is very similar to positively charged poly-L-lysine-coated surface. Higher interactions of GO with NOM-coated surfaces are attributed to the hydroxyl, epoxy, and carboxyl functional groups of GO; higher deposition on alginate-coated surfaces is attributed to the rougher surface created by the extended conformation of the larger alginate macromolecules. Both ionic strength (IS) and ion valence (Na(+) vs Ca(2+)) had notable impact on interactions of GO with different environmental surfaces. Due to charge screening, increased IS resulted in greater deposition for NOM-coated surfaces. Release behavior of deposited GO varied significantly between different environmental surfaces. All surfaces showed significant release of deposited GO upon introduction of low IS water, indicating that deposition of GO on these surfaces is reversible. Release of GO from NOM-coated surfaces decreased with IS due to charge screening. Release rates of deposited GO from alginate-coated surface were significantly lower than from SRHA and SRFA-coated surfaces due to trapping of GO within the rough surface of the alginate layer.


Subject(s)
Alginates/chemistry , Aluminum Oxide/chemistry , Benzopyrans/chemistry , Graphite/chemistry , Humic Substances/analysis , Nanostructures/chemistry , Water Pollutants, Chemical/chemistry , Graphite/toxicity , Models, Chemical , Nanostructures/toxicity , Osmolar Concentration , Quartz Crystal Microbalance Techniques , Rivers/chemistry , Silicon Dioxide/chemistry , Surface Properties , Water Pollutants, Chemical/toxicity
18.
Environ Sci Technol ; 48(2): 961-9, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24345218

ABSTRACT

Interactions of graphene oxide (GO) with silica surfaces were investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Both GO deposition and release were monitored on silica- and poly-l-lysine (PLL) coated surfaces as a function of GO concentration and in NaCl, CaCl2, and MgCl2 as a function of ionic strength (IS). Under favorable conditions (PLL-coated positive surface), GO deposition rates increased with GO concentration, as expected from colloidal theory. Increased NaCl concentration resulted in a greater deposition attachment efficiency of GO on the silica surface, indicating that deposition of GO follows Derjaguin-Landau-Verwey-Overbeek (DLVO) theory; GO deposition rates decreased at high IS, however, due to large aggregate formation. GO critical deposition concentration (CDC) on the silica surface is determined to be 40 mM NaCl which is higher than the reported CDC values of fullerenes and lower than carbon nanotubes. A similar trend is observed for MgCl2 which has a CDC value of 1.2 mM MgCl2. Only a minimal amount of GO (frequency shift <2 Hz) was deposited on the silica surface in CaCl2 due to the bridging ability of Ca(2+) ions with GO functional groups. Significant GO release from silica surface was observed after adding deionized water, indicating that GO deposition is reversible. The release rates of GO were at least 10-fold higher than the deposition rates under similar conditions indicating potential high release and mobility of GO in the environment. Under favorable conditions, a significant amount of GO was released which indicates potential multilayer GO deposition. However, a negligible amount of deposited GO was released in CaCl2 under favorable conditions due to the binding of GO layers with Ca(2+) ions. Release of GO was significantly dependent on salt type with an overall trend of NaCl > MgCl2 > CaCl2.


Subject(s)
Graphite/chemistry , Nanostructures/chemistry , Quartz Crystal Microbalance Techniques , Ions , Osmolar Concentration , Polylysine/chemistry , Silicon Dioxide/chemistry , Sodium Chloride/chemistry , Surface Properties
19.
Environ Sci Technol ; 47(18): 10372-80, 2013 Sep 17.
Article in English | MEDLINE | ID: mdl-23957606

ABSTRACT

Deposition of multiwalled carbon nanotubes (MWNTs) on model environmental surfaces was investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Deposition behaviors of MWNTs on positively and negatively charged surfaces were in good agreement with Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, although hydrophobic interactions dominated MWNTs deposition on a hydrophobic polystyrene surface. Initial deposition rates (rf) and deposition attachment efficiencies (αD) depended on solution ionic strengths (IS) and surface electrostatic properties. Identical rf and αD values at constant IS on similar surfaces suggested that deposition was insensitive to surface morphology (i.e., bare crystal surface vs coated surface). The dissipation unit (D) was used with frequency (f) to investigate nanoparticle deposition: |ΔD/Δf| values varied for deposition on different surfaces, indicating that the nature of MWNT association with surfaces varied despite constant rf and αD values.


Subject(s)
Nanotubes, Carbon/chemistry , Aluminum Oxide/chemistry , Ferrosoferric Oxide/chemistry , Hydrophobic and Hydrophilic Interactions , Osmolar Concentration , Polystyrenes/chemistry , Silicon Dioxide/chemistry , Sodium Chloride/chemistry , Static Electricity , Surface Properties
20.
Environ Sci Technol ; 47(12): 6288-96, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23668881

ABSTRACT

While graphene oxide (GO) has been found to be the most toxic graphene-based nanomaterial, its environmental fate is still unexplored. In this study, the aggregation kinetics and stability of GO were investigated using time-resolved dynamic light scattering over a wide range of aquatic chemistries (pH, salt types (NaCl, MgCl2, CaCl2), ionic strength) relevant to natural and engineered systems. Although pH did not have a notable influence on GO stability from pH 4 to 10, salt type and ionic strength had significant effects on GO stability due to electrical double layer compression, similar to other colloidal particles. The critical coagulation concentration (CCC) values of GO were determined to be 44 mM NaCl, 0.9 mM CaCl2, and 1.3 mM MgCl2. Aggregation and stability of GO in the aquatic environment followed colloidal theory (DLVO and Schulze-Hardy rule), even though GO's shape is not spherical. CCC values of GO were lower than reported fullerene CCC values and higher than reported carbon nanotube CCC values. CaCl2 destabilized GO more aggressively than MgCl2 and NaCl due to the binding capacity of Ca(2+) ions with hydroxyl and carbonyl functional groups of GO. Natural organic matter significantly improved the stability of GO in water primarily due to steric repulsion. Long-term stability studies demonstrated that GO was highly stable in both natural and synthetic surface waters, although it settled quickly in synthetic groundwater. While GO remained stable in synthetic influent wastewater, effluent wastewater collected from a treatment plant rapidly destabilized GO, indicating GO will settle out during the wastewater treatment process and likely accumulate in biosolids and sludge. Overall, our findings indicate that GO nanomaterials will be stable in the natural aquatic environment and that significant aqueous transport of GO is possible.


Subject(s)
Graphite/chemistry , Nanostructures/chemistry , Calcium Chloride/chemistry , Fullerenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...