Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Sci Adv ; 9(27): eadh1439, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37406121

ABSTRACT

As first demonstrated by Hanbury Brown and Twiss, it is possible to observe interference between independent light sources by measuring correlations in their intensities rather than their amplitudes. In this work, we apply this concept of intensity interferometry to holography. We combine a signal beam with a reference and measure their intensity cross-correlations using a time-tagging single-photon camera. These correlations reveal an interference pattern from which we reconstruct the signal wavefront in both intensity and phase. We demonstrate the principle with classical and quantum light, including a single photon. Since the signal and reference do not need to be phase-stable nor from the same light source, this technique can be used to generate holograms of self-luminous or remote objects using a local reference, thus opening the door to new holography applications.

2.
Biology (Basel) ; 10(7)2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34356506

ABSTRACT

Many separate fields and practices nowadays consider microbes as part of their legitimate focus. Therefore, microbiome studies may act as unexpected unifying forces across very different disciplines. Here, we summarize how microbiomes appear as novel major biological players, offer new artistic frontiers, new uses from medicine to laws, and inspire novel ontologies. We identify several convergent emerging themes across ecosystem studies, microbial and evolutionary ecology, arts, medicine, forensic analyses, law and philosophy of science, as well as some outstanding issues raised by microbiome studies across these disciplines and practices. An 'epistemic revolution induced by microbiome studies' seems to be ongoing, characterized by four features: (i) an ecologization of pre-existing concepts within disciplines, (ii) a growing interest in systemic analyses of the investigated or represented phenomena and a greater focus on interactions as their root causes, (iii) the intent to use openly multi-scalar interaction networks as an explanatory framework to investigate phenomena to acknowledge the causal effects of microbiomes, (iv) a reconceptualization of the usual definitions of which individuals are worth considering as an explanans or as an explanandum by a given field, which result in a fifth strong trend, namely (v) a de-anthropocentrification of our perception of the world.

3.
Can Commun Dis Rep ; 47(12): 534-542, 2021 Dec 09.
Article in English | MEDLINE | ID: mdl-35018141

ABSTRACT

Background: This PRONTO study investigated the clinical performance of the Abbott ID NOWTM (IDN) COVID-19 diagnostic assay used at point of care and its impact on turnaround time for divulgation of test results. Methods: Prospective study conducted from December 2020 to February 2021 in acute symptomatic participants presenting in three walk-in centres in the province of Québec. Results: Valid paired samples were obtained from 2,372 participants. A positive result on either the IDN or the standard-of-care nucleic acid amplification test (SOC-NAAT) was obtained in 423 participants (prevalence of 17.8%). Overall sensitivity of IDN and SOC-NAAT were 96.4% (95% CI: 94.2-98.0%) and 99.1% (95% CI: 97.6-99.8), respectively; negative predictive values were 99.2% (95% CI: 98.7-99.6%) and 99.8% (95% CI: 99.5-100%), respectively. Turnaround time for positive results was significantly faster on IDN. Conclusion: In our experience, IDN use in symptomatic individuals in walk-in centres is a reliable sensitive alternative to SOC-NAAT without the need for subsequent confirmation of negative results. Such deployment can accelerate contact tracing, reduce the burden on laboratories and increase access to testing.

4.
Phys Rev Lett ; 127(26): 263601, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35029483

ABSTRACT

The increased phase sensitivity of N00N states has been used in many experiments, often involving photon paths or polarization. Here we experimentally combine the phase sensitivity of N00N states with the orbital angular momentum (OAM) of photons up to 100 ℏ, to resolve rotations of a light field around its optical axis. The results show that both a higher photon number and larger OAM increase the resolution and achievable sensitivity. The presented method opens a viable path to unconditional angular supersensitivity and accessible generation of N00N states between any transverse light fields.

5.
Rep Prog Phys ; 84(1): 012402, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33232945

ABSTRACT

Nearly 30 years ago, two-photon interference was observed, marking the beginning of a new quantum era. Indeed, two-photon interference has no classical analogue, giving it a distinct advantage for a range of applications. The peculiarities of quantum physics may now be used to our advantage to outperform classical computations, securely communicate information, simulate highly complex physical systems and increase the sensitivity of precise measurements. This separation from classical to quantum physics has motivated physicists to study two-particle interference for both fermionic and bosonic quantum objects. So far, two-particle interference has been observed with massive particles, among others, such as electrons and atoms, in addition to plasmons, demonstrating the extent of this effect to larger and more complex quantum systems. A wide array of novel applications to this quantum effect is to be expected in the future. This review will thus cover the progress and applications of two-photon (two-particle) interference over the last three decades.

6.
Opt Express ; 27(19): 26346-26354, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31674518

ABSTRACT

We examine the propagation of optical beams possessing different polarization states and spatial modes through the Ottawa River in Canada. A Shack-Hartmann wavefront sensor is used to record the distorted beam's wavefront. The turbulence in the underwater channel is analysed, and associated Zernike coefficients are obtained in real-time. Finally, we explore the feasibility of transmitting polarization states as well as spatial modes through the underwater channel for applications in quantum cryptography.

7.
Genome Biol Evol ; 11(9): 2653-2665, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31504500

ABSTRACT

Explaining the evolution of animals requires ecological, developmental, paleontological, and phylogenetic considerations because organismal traits are affected by complex evolutionary processes. Modeling a plurality of processes, operating at distinct time-scales on potentially interdependent traits, can benefit from approaches that are complementary treatments to phylogenetics. Here, we developed an inclusive network approach, implemented in the command line software ComponentGrapher, and analyzed trait co-occurrence of rhinocerotoid mammals. We identified stable, unstable, and pivotal traits, as well as traits contributing to complexes, that may follow to a common developmental regulation, that point to an early implementation of the postcranial Bauplan among rhinocerotoids. Strikingly, most identified traits are highly dissociable, used repeatedly in distinct combinations and in different taxa, which usually do not form clades. Therefore, the genes encoding these traits are likely recruited into novel gene regulation networks during the course of evolution. Our evo-systemic framework, generalizable to other evolved organizations, supports a pluralistic modeling of organismal evolution, including trees and networks.


Subject(s)
Biological Evolution , Mammals/anatomy & histology , Mammals/genetics , Animals , Bone and Bones/anatomy & histology , Mammals/classification , Phylogeny , Software , Tooth/anatomy & histology
8.
Opt Express ; 27(13): 17426-17434, 2019 Jun 24.
Article in English | MEDLINE | ID: mdl-31252702

ABSTRACT

The ability to completely characterize the state of a system is an essential element for the emerging quantum technologies. Here, we present a compressed-sensing-inspired method to ascertain any rank-deficient qudit state, which we experimentally encode in photonic orbital angular momentum. We efficiently reconstruct these qudit states from a few scans with an intensified CCD camera. Since it only requires a small number of intensity measurements, our technique provides an easy and accurate way to identify quantum sources, channels, and systems.

9.
Opt Express ; 27(3): 2212-2224, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30732261

ABSTRACT

Quantum - or classically correlated - light can be employed in various ways to improve resolution and measurement sensitivity. In an "interaction-free" measurement, a single photon can be used to reveal the presence of an object placed within one arm of an interferometer without being absorbed by it. With a technique known as "ghost-imaging", entangled photon pairs are used for detecting an opaque object with significantly improved signal-to-noise ratio while preventing over-illumination. Here, we integrate these two methods to obtain a new imaging technique which we term "interaction-free ghost-imaging" (IFGI). With this new technique, we reduce photon illumination on the object by up to 26.5% while still maintaining at least the same image quality of conventional ghost-imaging. Alternatively, IFGI can improve image signal-to-noise ratio by 18% when given the same number of interacting photons as in standard ghost-imaging. IFGI is also sensitive to phase and polarisation changes of the photons introduced by a structured object. These advantages make IFGI superior for probing light-sensitive materials and biological tissues.

10.
Opt Lett ; 43(17): 4108-4111, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30160728

ABSTRACT

Optical fiber links and networks are integral components within and between cities' communication infrastructures. Implementing quantum cryptographic protocols on either existing or new fiber links will provide information-theoretical security to fiber data transmissions. However, there is a need for ways to increase the channel bandwidth. Using the transverse spatial degree of freedom is one way to transmit more information and increase tolerable error thresholds by extending the common qubit protocols to high-dimensional quantum key distribution (QKD) schemes. Here we use one type of vortex fiber where the transverse spatial modes serves as an additional channel to encode quantum information by structuring the spin and orbital angular momentum of light. In this proof-of-principle experiment, we show that two-dimensional structured photons can be used in such vortex fibers in addition to the common two-dimensional polarization encryption, thereby paving the path to QKD multiplexing schemes.

11.
Opt Express ; 26(17): 22563-22573, 2018 Aug 20.
Article in English | MEDLINE | ID: mdl-30130947

ABSTRACT

Quantum communication has been successfully implemented in optical fibres and through free-space. Fibre systems, though capable of fast key and low error rates, are impractical in communicating with destinations without an established fibre link. Free-space quantum channels can overcome such limitations and reach long distances with the advent of satellite-to-ground links. However, turbulence, resulting from local fluctuations in refractive index, becomes a major challenge by adding errors and losses. Recently, an interest in investigating the possibility of underwater quantum channels has arisen. Here, we investigate the effect of turbulence on an underwater quantum channel using twisted photons in outdoor conditions. We study the effect of turbulence on transmitted error rates, and compare different quantum cryptographic protocols in an underwater quantum channel, showing the feasibility of high-dimensional encoding schemes. Our work may open the way for secure high-dimensional quantum communication between submersibles, and provides important input for potential submersibles-to-satellite quantum communication.

12.
Opt Express ; 26(24): 31925-31941, 2018 Nov 26.
Article in English | MEDLINE | ID: mdl-30650772

ABSTRACT

With the emergence of the field of quantum communications, the appropriate choice of photonic degrees of freedom used for encoding information is of paramount importance. Highly precise techniques for measuring the polarisation, frequency, and arrival time of a photon have been developed. However, the transverse spatial degree of freedom still lacks a measurement scheme that allows the reconstruction of its full transverse structure with a simple implementation and a high level of accuracy. Here we show a method to measure the azimuthal and radial modes of Laguerre-Gaussian beams with a greater than 99 % accuracy, using a single phase screen. We compare our technique with previous commonly used methods and demonstrate the significant improvements it presents for quantum key distribution and state tomography of high-dimensional quantum states of light. Moreover, our technique can be readily extended to any arbitrary family of spatial modes, such as mutually unbiased bases, Hermite-Gauss, and Ince-Gauss. Our scheme will significantly enhance existing quantum and classical communication protocols that use the spatial structure of light, as well as enable fundamental experiments on spatial-mode entanglement to reach their full potential.

13.
Opt Express ; 25(17): 19832-19843, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-29041670

ABSTRACT

The orbital angular momentum (OAM) carried by optical beams is a useful quantity for encoding information. This form of encoding has been incorporated into various works ranging from telecommunications to quantum cryptography, most of which require methods that can rapidly process the OAM content of a beam. Among current state-of-the-art schemes that can readily acquire this information are so-called OAM sorters, which consist of devices that spatially separate the OAM components of a beam. Such devices have found numerous applications in optical communications, a field that is in constant demand for additional degrees of freedom, such as polarization and wavelength, into which information can also be encoded. Here, we report the implementation of a device capable of sorting a beam based on its OAM and polarization content, which could be of use in works employing both of these degrees of freedom as information channels. After characterizing our fabricated device, we demonstrate how it can be used for quantum communications via a quantum key distribution protocol.

14.
Nat Commun ; 8(1): 689, 2017 09 25.
Article in English | MEDLINE | ID: mdl-28947803

ABSTRACT

Electron waves give an unprecedented enhancement to the field of microscopy by providing higher resolving power compared to their optical counterpart. Further information about a specimen, such as electric and magnetic features, can be revealed in electron microscopy because electrons possess both a magnetic moment and charge. In-plane magnetic structures in materials can be studied experimentally using the effect of the Lorentz force. On the other hand, full mapping of the magnetic field has hitherto remained challenging. Here we measure a nanoscale out-of-plane magnetic field by interfering a highly twisted electron vortex beam with a reference wave. We implement a recently developed holographic technique to manipulate the electron wavefunction, which gives free electrons an additional unbounded quantized magnetic moment along their propagation direction. Our finding demonstrates that full reconstruction of all three components of nanoscale magnetic fields is possible without tilting the specimen.Beyond high resolving power, electron microscopy can be used to study both the electronic and magnetic properties of a sample. Here, Grillo et al. combine electron vortex beams with holographic detection to measure out-of-plane nanoscale magnetic fields.

15.
Article in English | MEDLINE | ID: mdl-28702216

ABSTRACT

Shallow lakes are common across the Arctic landscape and their ecosystem productivity is often dominated by benthic, cyanobacterial biofilms. Many of these water bodies freeze to the bottom and are biologically inactive during winter, but full freeze-up is becoming less common with Arctic warming. Here we analyzed the microbiome structure of newly discovered biofilms at the deepest site of a perennially ice-covered High Arctic lake as a model of polar microbial communities that remain unfrozen throughout the year. Biofilms were also sampled from the lake's shallow moat region that melts out and refreezes to the bottom annually. Using high throughput small subunit ribosomal RNA sequencing, we found more taxonomic richness in Bacteria, Archaea and microbial eukaryotes in the perennially unfrozen biofilms compared to moat communities. The deep communities contained both aerobic and anaerobic taxa including denitrifiers, sulfate reducers, and methanogenic Archaea. The water overlying the deep biofilms was well oxygenated in mid-summer but almost devoid of oxygen in spring, indicating anoxia during winter. Seasonally alternating oxic-anoxic regimes may become increasingly widespread in polar biofilms as fewer lakes and ponds freeze to the bottom, favoring prolonged anaerobic metabolism and greenhouse gas production during winter darkness.

16.
Nat Commun ; 8: 15536, 2017 05 24.
Article in English | MEDLINE | ID: mdl-28537248

ABSTRACT

Electron waves that carry orbital angular momentum (OAM) are characterized by a quantized and unbounded magnetic dipole moment parallel to their propagation direction. When interacting with magnetic materials, the wavefunctions of such electrons are inherently modified. Such variations therefore motivate the need to analyse electron wavefunctions, especially their wavefronts, to obtain information regarding the material's structure. Here, we propose, design and demonstrate the performance of a device based on nanoscale holograms for measuring an electron's OAM components by spatially separating them. We sort pure and superposed OAM states of electrons with OAM values of between -10 and 10. We employ the device to analyse the OAM spectrum of electrons that have been affected by a micron-scale magnetic dipole, thus establishing that our sorter can be an instrument for nanoscale magnetic spectroscopy.

17.
Nat Commun ; 8: 14970, 2017 04 05.
Article in English | MEDLINE | ID: mdl-28378823

ABSTRACT

Optical vortices, which carry orbital angular momentum (OAM), can be flexibly produced and measured with infrared and visible light. Their application is an important research topic for super-resolution imaging, optical communications and quantum optics. However, only a few methods can produce OAM beams in the extreme ultraviolet (XUV) or X-ray, and controlling the OAM on these beams remains challenging. Here we apply wave mixing to a tabletop high-harmonic source, as proposed in our previous work, and control the topological charge (OAM value) of XUV beams. Our technique enables us to produce first-order OAM beams with the smallest possible central intensity null at XUV wavelengths. This work opens a route for carrier-injected laser machining and lithography, which may reach nanometre or even angstrom resolution. Such a light source is also ideal for space communications, both in the classical and quantum regimes.

18.
Sci Adv ; 3(2): e1601915, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28168219

ABSTRACT

Attempts at cloning a quantum system result in the introduction of imperfections in the state of the copies. This is a consequence of the no-cloning theorem, which is a fundamental law of quantum physics and the backbone of security for quantum communications. Although perfect copies are prohibited, a quantum state may be copied with maximal accuracy via various optimal cloning schemes. Optimal quantum cloning, which lies at the border of the physical limit imposed by the no-signaling theorem and the Heisenberg uncertainty principle, has been experimentally realized for low-dimensional photonic states. However, an increase in the dimensionality of quantum systems is greatly beneficial to quantum computation and communication protocols. Nonetheless, no experimental demonstration of optimal cloning machines has hitherto been shown for high-dimensional quantum systems. We perform optimal cloning of high-dimensional photonic states by means of the symmetrization method. We show the universality of our technique by conducting cloning of numerous arbitrary input states and fully characterize our cloning machine by performing quantum state tomography on cloned photons. In addition, a cloning attack on a Bennett and Brassard (BB84) quantum key distribution protocol is experimentally demonstrated to reveal the robustness of high-dimensional states in quantum cryptography.

19.
Phys Rev Lett ; 117(23): 233903, 2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27982639

ABSTRACT

We study the nonlinear optical propagation of two different classes of light beams with space-varying polarization-radially symmetric vector beams and Poincaré beams with lemon and star topologies-in a rubidium vapor cell. Unlike Laguerre-Gauss and other types of beams that quickly experience instabilities, we observe that their propagation is not marked by beam breakup while still exhibiting traits such as nonlinear confinement and self-focusing. Our results suggest that, by tailoring the spatial structure of the polarization, the effects of nonlinear propagation can be effectively controlled. These findings provide a novel approach to transport high-power light beams in nonlinear media with controllable distortions to their spatial structure and polarization properties.

20.
Phys Rev Lett ; 117(15): 154801, 2016 Oct 07.
Article in English | MEDLINE | ID: mdl-27768337

ABSTRACT

Free electrons with a helical phase front, referred to as "twisted" electrons, possess an orbital angular momentum (OAM) and, hence, a quantized magnetic dipole moment along their propagation direction. This intrinsic magnetic moment can be used to probe material properties. Twisted electrons thus have numerous potential applications in materials science. Measuring this quantity often relies on a series of projective measurements that subsequently change the OAM carried by the electrons. In this Letter, we propose a nondestructive way of measuring an electron beam's OAM through the interaction of this associated magnetic dipole with a conductive loop. Such an interaction results in the generation of induced currents within the loop, which are found to be directly proportional to the electron's OAM value. Moreover, the electron experiences no OAM variations and only minimal energy losses upon the measurement, and, hence, the nondestructive nature of the proposed technique.

SELECTION OF CITATIONS
SEARCH DETAIL
...