Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 299(12): 105427, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37926283

ABSTRACT

Phase separation compartmentalizes many cellular pathways. Given that the same interactions that drive phase separation mediate the formation of soluble complexes below the saturation concentration, the contribution of condensates versus complexes to function is sometimes unclear. Here, we characterized several new cancer-associated mutations of the tumor suppressor speckle-type POZ protein (SPOP), a substrate recognition subunit of the Cullin3-RING ubiquitin ligase. This pointed to a strategy for generating separation-of-function mutations. SPOP self-associates into linear oligomers and interacts with multivalent substrates, and this mediates the formation of condensates. These condensates bear the hallmarks of enzymatic ubiquitination activity. We characterized the effect of mutations in the dimerization domains of SPOP on its linear oligomerization, binding to its substrate DAXX, and phase separation with DAXX. We showed that the mutations reduce SPOP oligomerization and shift the size distribution of SPOP oligomers to smaller sizes. The mutations therefore reduce the binding affinity to DAXX but unexpectedly enhance the poly-ubiquitination activity of SPOP toward DAXX. Enhanced activity may be explained by enhanced phase separation of DAXX with the SPOP mutants. Our results provide a comparative assessment of the functional role of complexes versus condensates and support a model in which phase separation is an important factor in SPOP function. Our findings also suggest that tuning of linear SPOP self-association could be used by the cell to modulate activity and provide insights into the mechanisms underlying hypermorphic SPOP mutations. The characteristics of cancer-associated SPOP mutations suggest a route for designing separation-of-function mutations in other phase-separating systems.


Subject(s)
Neoplasms , Phase Separation , Humans , Neoplasms/pathology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Animals
2.
bioRxiv ; 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36993550

ABSTRACT

Phase separation is a ubiquitous process that compartmentalizes many cellular pathways. Given that the same interactions that drive phase separation mediate the formation of complexes below the saturation concentration, the contribution of condensates vs complexes to function is not always clear. Here, we characterized several new cancer-associated mutations of the tumor suppressor Speckle-type POZ protein (SPOP), a substrate recognition subunit of the Cullin3-RING ubiquitin ligase (CRL3), which pointed to a strategy for generating separation-of-function mutations. SPOP self-associates into linear oligomers and interacts with multivalent substrates, and this mediates the formation of condensates. These condensates bear the hallmarks of enzymatic ubiquitination activity. We characterized the effect of mutations in the dimerization domains of SPOP on its linear oligomerization, binding to the substrate DAXX, and phase separation with DAXX. We showed that the mutations reduce SPOP oligomerization and shift the size distribution of SPOP oligomers to smaller sizes. The mutations therefore reduce the binding affinity to DAXX, but enhance the poly-ubiquitination activity of SPOP towards DAXX. This unexpectedly enhanced activity may be explained by enhanced phase separation of DAXX with the SPOP mutants. Our results provide a comparative assessment of the functional role of clusters versus condensates and support a model in which phase separation is an important factor in SPOP function. Our findings also suggest that tuning of linear SPOP self-association could be used by the cell to modulate its activity, and provide insights into the mechanisms underlying hypermorphic SPOP mutations. The characteristics of these cancer-associated SPOP mutations suggest a route for designing separation-of-function mutations in other phase-separating systems.

3.
Sci Adv ; 8(27): eabq0084, 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35857476

ABSTRACT

Toll-like receptors (TLRs) recognize pathogen- and host-derived factors and control immune responses via the adaptor protein MyD88 and members of the interferon regulatory transcription factor (IRF) family. IRFs orchestrate key effector functions, including cytokine release, cell differentiation, and, under certain circumstances, inflammation pathology. Here, we show that IRF activity is generically controlled by the Src kinase family member LYN, which phosphorylates all TLR-induced IRFs at a conserved tyrosine residue, resulting in K48-linked polyubiquitination and proteasomal degradation of IRFs. We further show that LYN activity is controlled by the upstream kinase C-terminal Src kinase (CSK), whose activity, in turn, is controlled by the adaptor protein SPOP, which serves as molecular bridge to recruit CSK into the TLR signaling complex and to activate CSK catalytic activity. Consistently, deletion of SPOP or CSK results in increased LYN activity, LYN-directed IRF degradation, and inhibition of IRF transcriptional activity. Together, the data reveal a key regulatory mechanism for IRF family members controlling TLR biology.

4.
J Am Chem Soc ; 142(2): 874-883, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31845799

ABSTRACT

Biomolecular condensates are emerging as an important organizational principle within living cells. These condensed states are formed by phase separation, yet little is known about how material properties are encoded within the constituent molecules and how the specificity for being in different phases is established. Here we use analytic theory to explain the phase behavior of the cancer-related protein SPOP and its substrate DAXX. Binary mixtures of these molecules have a phase diagram that contains dilute liquid, dense liquid, and gel states. We show that these discrete phases appear due to a competition between SPOP-DAXX and DAXX-DAXX interactions. The stronger SPOP-DAXX interactions dominate at sub-stoichiometric DAXX concentrations leading to the formation of cross-linked gels. The theory shows that the driving force for gel formation is not the binding energy, but rather the entropy of distributing DAXX molecules on the binding sites. At high DAXX concentrations the SPOP-DAXX interactions saturate, which leads to the dissolution of the gel and the appearance of a liquid phase driven by weaker DAXX-DAXX interactions. This competition between interactions allows multiple dense phases to form in a narrow region of parameter space. We propose that the molecular architecture of phase-separating proteins governs the internal structure of dense phases, their material properties and their functions. Analytical theory can reveal these properties on the long length and time scales relevant to biomolecular condensates.


Subject(s)
Proteins/chemistry , Dimerization , Phase Transition , Protein Binding , Protein Conformation
5.
Mol Cell ; 72(1): 19-36.e8, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30244836

ABSTRACT

Mutations in the tumor suppressor SPOP (speckle-type POZ protein) cause prostate, breast, and other solid tumors. SPOP is a substrate adaptor of the cullin3-RING ubiquitin ligase and localizes to nuclear speckles. Although cancer-associated mutations in SPOP interfere with substrate recruitment to the ligase, mechanisms underlying assembly of SPOP with its substrates in liquid nuclear bodies and effects of SPOP mutations on assembly are poorly understood. Here, we show that substrates trigger phase separation of SPOP in vitro and co-localization in membraneless organelles in cells. Enzymatic activity correlates with cellular co-localization and in vitro mesoscale assembly formation. Disease-associated SPOP mutations that lead to the accumulation of proto-oncogenic proteins interfere with phase separation and co-localization in membraneless organelles, suggesting that substrate-directed phase separation of this E3 ligase underlies the regulation of ubiquitin-dependent proteostasis.


Subject(s)
Cell Compartmentation/genetics , Neoplasms/genetics , Nuclear Proteins/genetics , Proteostasis/genetics , Repressor Proteins/genetics , Cell Line, Tumor , Humans , Mutation , Neoplasms/pathology , Ubiquitin/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination/genetics
6.
J Mol Biol ; 430(14): 2164-2180, 2018 07 06.
Article in English | MEDLINE | ID: mdl-29775635

ABSTRACT

Many signaling proteins consist of globular domains connected by flexible linkers that allow for substantial domain motion. Because these domains often serve as complementary functional modules, the possibility of functionally important domain motions arises. To explore this possibility, we require knowledge of the ensemble of protein conformations sampled by interdomain motion. Measurements of NMR residual dipolar couplings (RDCs) of backbone HN bonds offer a per-residue characterization of interdomain dynamics, as the couplings are sensitive to domain orientation. A challenge in reaching this potential is the need to interpret the RDCs as averages over dynamic ensembles of domain conformations. Here, we address this challenge by introducing an efficient protocol for generating conformational ensembles appropriate for flexible, multi-domain proteins. The protocol uses map-restrained self-guided Langevin dynamics simulations to promote collective, interdomain motion while restraining the internal domain motion to near rigidity. Critically, the simulations retain an all-atom description for facile inclusion of site-specific NMR RDC restraints. The result is the rapid generation of conformational ensembles consistent with the RDC data. We illustrate this protocol on human Pin1, a two-domain peptidyl-prolyl isomerase relevant for cancer and Alzheimer's disease. The results include the ensemble of domain orientations sampled by Pin1, as well as those of a dysfunctional variant, I28A-Pin1. The differences between the ensembles corroborate our previous spin relaxation results that showed weakened interdomain contact in the I28A variant relative to wild type. Our protocol extends our abilities to explore the functional significance of protein domain motions.


Subject(s)
NIMA-Interacting Peptidylprolyl Isomerase/chemistry , NIMA-Interacting Peptidylprolyl Isomerase/genetics , Binding Sites , Humans , Models, Molecular , Motion , Mutation , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Protein Domains
7.
Biochemistry ; 52(40): 6968-81, 2013 Oct 08.
Article in English | MEDLINE | ID: mdl-24020391

ABSTRACT

Pin1 is an essential mitotic regulator consisting of a peptidyl-prolyl isomerase (PPIase) domain flexibly tethered to a smaller Trp-Trp (WW) binding domain. Communication between these domains is important for Pin1 in vivo activity; however, the atomic basis for this communication has remained elusive. Our previous nuclear magnetic resonance (NMR) studies of Pin1 functional dynamics suggested that weak interdomain contacts within Pin1 enable allosteric communication between the domain interface and the distal active site of the PPIase domain.1,2 A necessary condition for this hypothesis is that the intrinsic properties of the PPIase domain should be sensitive to interdomain contact. Here, we test this sensitivity by generating a Pin1 mutant, I28A, which weakens the wild-type interdomain contact while maintaining the overall folds of the two domains. Using NMR, we show that I28A leads to altered substrate binding affinity and isomerase activity. Moreover, I28A causes long-range perturbations to conformational flexibility in both domains, for both the apo and substrate-complexed states of the protein. These results show that the distribution of conformations sampled by the PPIase domain is sensitive to interdomain contact and strengthen the hypothesis that such contact supports interdomain allosteric communication in Pin1. Other modular systems may exploit interdomain interactions in a similar manner.


Subject(s)
Peptidylprolyl Isomerase/chemistry , Protein Structure, Tertiary/physiology , Allosteric Regulation , Amino Acid Substitution , Humans , NIMA-Interacting Peptidylprolyl Isomerase , Nuclear Magnetic Resonance, Biomolecular , Peptidylprolyl Isomerase/genetics , Peptidylprolyl Isomerase/metabolism , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...