Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 6(50)2020 Dec.
Article in English | MEDLINE | ID: mdl-33298450

ABSTRACT

Li-10 wt % Mg alloy (Li-10 Mg) is used as an anode material for a solid-state battery with excellent electrochemical performance and no evidence of dendrite formation during cycling. Thermal treatment of Li metal during manufacturing improves the interfacial contact between a Li metal electrode and solid electrolyte to achieve an all solid-state battery with increased performance. To understand the properties of the alloy passivation layer, this paper presents the first direct observation of its evolution at elevated temperatures (up to 325°C) by in situ scanning electron microscopy. We found that the morphology of the surface passivation layer was unchanged above the alloy melting point, while the bulk of the material below the surface was melted at the expected melting point, as confirmed by in situ electron backscatter diffraction. In situ heat treatment of Li-based materials could be a key method to improve battery performance.

2.
Materials (Basel) ; 13(3)2020 Feb 10.
Article in English | MEDLINE | ID: mdl-32050558

ABSTRACT

An exponential market growth of Li-ion batteries (LIBs) has been observed in the past 20 years; approximately 670,000 tons of LIBs have been sold in 2017 alone. This trend will continue owing to the growing interest of consumers for electric vehicles, recent engagement of car manufacturers to produce them, recent developments in energy storage facilities, and commitment of governments for the electrification of transportation. Although some limited recycling processes were developed earlier after the commercialization of LIBs, these are inadequate in the context of sustainable development. Therefore, significant efforts have been made to replace the commonly employed pyrometallurgical recycling method with a less detrimental approach, such as hydrometallurgical, in particular sulfate-based leaching, or direct recycling. Sulfate-based leaching is the only large-scale hydrometallurgical method currently used for recycling LIBs and serves as baseline for several pilot or demonstration projects currently under development. Conversely, most project and processes focus only on the recovery of Ni, Co, Mn, and less Li, and are wasting the iron phosphate originating from lithium iron phosphate (LFP) batteries. Although this battery type does not dominate the LIB market, its presence in the waste stream of LIBs causes some technical concerns that affect the profitability of current recycling processes. This review explores the current processes and alternative solutions to pyrometallurgy, including novel selective leaching processes or direct recycling approaches.

3.
Microsc Microanal ; 25(4): 866-873, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31122303

ABSTRACT

A technique to characterize the native passivation layer (NPL) on pure lithium metal foils in a scanning electron microscope (SEM) is described in this paper. Lithium is a very reactive metal, and consequently, observing and quantifying its properties in a SEM is often compromised by rapid oxidation. In this work, a pure lithium energy-dispersive x-ray spectrum is obtained for the first time in a high vacuum SEM using a cold stage/cold trap with liquid nitrogen reservoir outside the SEM chamber. A nanomanipulator (OmniProbe 400) inside the microscope combined with x-ray microanalysis and windowless energy dispersive spectrometer is used to fully characterize the NPL of lithium metal and some of its alloys by a mechanical removal procedure. The results show that the native films of pure lithium and its alloys are composed of a thin (25 nm) outer layer that is carbon-rich and an inner layer containing a significant amount of oxygen. Differences in thickness between laminated and extruded samples are observed and vary depending on the alloy composition.

4.
Nano Lett ; 18(12): 7583-7589, 2018 12 12.
Article in English | MEDLINE | ID: mdl-30462516

ABSTRACT

Li metal batteries suffer from dendrite formation which causes short circuit of the battery. Therefore, it is important to understand the chemical composition and growth mechanism of dendrites that limit battery efficiency and cycle life. In this study, in situ scanning electron microscopy was employed to monitor the cycling behavior of all-solid Li metal batteries with LiFePO4 cathodes. Chemical analyses of the dendrites were conducted using a windowless energy dispersive spectroscopy detector, which showed that the dendrites are not metallic lithium as universally recognized. Our results revealed the carbide nature of the dendrites with a hollow morphology and hardness greater than that of pure lithium. These carbide-based dendrites were able to perforate through the polymer, which was confirmed by milling the polymer using focused ion beam. It was also shown that applying pressure on the battery can suppress growth of the dendrites.

6.
Phys Chem Chem Phys ; 10(11): 1577-83, 2008 Mar 21.
Article in English | MEDLINE | ID: mdl-18327314

ABSTRACT

The hydration process of cationic membrane protogenic groups was investigated using in situ ATR-FTIR spectroscopy. The aim of this study is to provide a relationship between the hydration degree of the membrane and the dissociation state of exchange sites inside the polymer material. IR spectra were recorded by means of an environmental device specifically manufactured to allow the control of water vapour pressure in equilibrium with the sample. The behaviour of Nafion 112 and sulfonated poly(ether ether ketone) (S-PEEK), in both proton and sodium forms, was compared. IR data, analyzed and fitted in the 800-1850 cm(-1) spectral range, gave precise information on the assignment of sulfonic group vibrational modes. The results of this study improve the understanding of the transition phenomena between dissociated and undissociated states of the grafted sites in protonic conductors.


Subject(s)
Biocompatible Materials/chemistry , Ketones/chemistry , Membranes, Artificial , Polyethylene Glycols/chemistry , Polymers/chemistry , Protons , Spectroscopy, Fourier Transform Infrared/methods , Sulfones/chemistry , Benzophenones , Ions/chemistry , Sodium/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...