Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Neurosci ; 23(5): 638-650, 2020 05.
Article in English | MEDLINE | ID: mdl-32284606

ABSTRACT

Heightened aggression is characteristic of multiple neuropsychiatric disorders and can have various negative effects on patients, their families and the public. Recent studies in humans and animals have implicated brain reward circuits in aggression and suggest that, in subsets of aggressive individuals, domination of subordinate social targets is reinforcing. In this study, we showed that, in male mice, orexin neurons in the lateral hypothalamus activated a small population of glutamic acid decarboxylase 2 (GAD2)-expressing neurons in the lateral habenula (LHb) via orexin receptor 2 (OxR2) and that activation of these GAD2 neurons promoted male-male aggression and conditioned place preference for aggression-paired contexts. Moreover, LHb GAD2 neurons were inhibitory within the LHb and dampened the activity of the LHb as a whole. These results suggest that the orexin system is important for the regulation of inter-male aggressive behavior and provide the first functional evidence of a local inhibitory circuit within the LHb.


Subject(s)
Aggression/physiology , GABAergic Neurons/metabolism , Habenula/metabolism , Orexins/metabolism , Animals , Male , Mice , Signal Transduction/physiology
2.
Biol Psychiatry ; 86(6): 474-482, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31101319

ABSTRACT

BACKGROUND: Clinical studies suggest that heightened peripheral inflammation contributes to the pathogenesis of stress-related disorders, including major depressive disorder. However, the molecular mechanisms within peripheral immune cells that mediate enhanced stress vulnerability are not well known. Because microRNAs (miRs) are important regulators of immune response, we sought to examine their role in mediating inflammatory and behavioral responses to repeated social defeat stress (RSDS), a mouse model of stress vulnerability that produces susceptible and resilient phenotypes. METHODS: We isolated Ly6chigh monocytes via fluorescence-activated cell sorting in the blood of susceptible and resilient mice following RSDS and profiled miR expression via quantitative real-time polymerase chain reaction. Bone marrow chimeric mice were generated to confirm a causal role of the miR-106b∼25 cluster in bone marrow-derived leukocytes in mediating stress resilience versus susceptibility. RESULTS: We found that RSDS produces an increase in circulating Ly6chigh inflammatory monocytes in both susceptible and resilient mice. We next investigated whether intrinsic leukocyte posttranscriptional mechanisms contribute to individual differences in stress response and the resilient phenotype. Of the miRs profiled in our panel, eight were significantly regulated by RSDS within Ly6chigh monocytes, including miR-25-3p, a member of the miR-106b∼25 cluster. Selective knockout of the miR-106b∼25 cluster in peripheral leukocytes promoted behavioral resilience to RSDS. CONCLUSIONS: Our results identify the miR-106b∼25 cluster as a key regulator of stress-induced inflammation and depression that may represent a novel therapeutic target for drug development.


Subject(s)
Behavior, Animal , Depression/metabolism , MicroRNAs/metabolism , Resilience, Psychological , Stress, Psychological/metabolism , Animals , Bone Marrow Transplantation , Depression/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , Monocytes/metabolism , Stress, Psychological/pathology , Transplantation Chimera
3.
Nat Neurosci ; 20(12): 1752-1760, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29184215

ABSTRACT

Studies suggest that heightened peripheral inflammation contributes to the pathogenesis of major depressive disorder. We investigated the effect of chronic social defeat stress, a mouse model of depression, on blood-brain barrier (BBB) permeability and infiltration of peripheral immune signals. We found reduced expression of the endothelial cell tight junction protein claudin-5 (Cldn5) and abnormal blood vessel morphology in nucleus accumbens (NAc) of stress-susceptible but not resilient mice. CLDN5 expression was also decreased in NAc of depressed patients. Cldn5 downregulation was sufficient to induce depression-like behaviors following subthreshold social stress whereas chronic antidepressant treatment rescued Cldn5 loss and promoted resilience. Reduced BBB integrity in NAc of stress-susceptible or mice injected with adeno-associated virus expressing shRNA against Cldn5 caused infiltration of the peripheral cytokine interleukin-6 (IL-6) into brain parenchyma and subsequent expression of depression-like behaviors. These findings suggest that chronic social stress alters BBB integrity through loss of tight junction protein Cldn5, promoting peripheral IL-6 passage across the BBB and depression.


Subject(s)
Depression/pathology , Depression/psychology , Social Environment , Stress, Psychological/pathology , Stress, Psychological/psychology , Adrenergic Uptake Inhibitors/pharmacology , Animals , Anxiety/psychology , Behavior, Animal , Blood-Brain Barrier/pathology , Claudin-5/biosynthesis , Claudin-5/genetics , Feeding Behavior , Food Preferences , Imipramine/pharmacology , Interleukin-6/biosynthesis , Male , Mice , Mice, Inbred C57BL , Nucleus Accumbens/pathology , Swimming/psychology , Tight Junction Proteins/metabolism
4.
Neurobiol Aging ; 36(3): 1471-82, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25556161

ABSTRACT

In humans, memory capacities are generally affected with aging, even without any reported neurologic disorders. The mechanisms behind cognitive decline are not well understood. We studied here whether postsynaptic glutamate receptor and presynaptic vesicular glutamate transporters (VGLUTs) levels may change in the course of aging and be related to cognitive abilities using various age-impaired (AI) or age-unimpaired rat strains. Twenty-four-month-old Long-Evans (LE) rats with intact spatial memory maintained postsynaptic ionotropic glutamate receptor levels in the hippocampal-adjacent cortex similar to those of young animals. In contrast, AI rats showed significantly reduced expression of ionotropic glutamate receptor GluR2, NR2A and NR2B subunits. In AI LE rats, VGLUT1 and VGLUT2 levels were increased and negatively correlated with receptor levels as shown by principal component analysis and correlation matrices. We also investigated whether glutamatergic receptors and VGLUT levels were altered in the obesity-resistant LOU/C/Jall (LOU) rat strain which is characterized by intact memory despite aging. No difference was observed between 24-month-old LOU rats and their young counterparts. Taken together, the unaltered spatial memory performance of 24-month-old age-unimpaired LE and LOU rats suggests that intact coordination of the presynaptic and postsynaptic hippocampal-adjacent cortex glutamatergic networks may be important for successful cognitive aging. Accordingly, altered expression of presynaptic and postsynaptic glutamatergic components, such as in AI LE rats, could be considered a marker of age-related cognitive deficits.


Subject(s)
Aging/psychology , Gene Expression/genetics , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Spatial Memory/physiology , Vesicular Glutamate Transport Protein 1/genetics , Vesicular Glutamate Transport Protein 1/metabolism , Vesicular Glutamate Transport Protein 2/genetics , Vesicular Glutamate Transport Protein 2/metabolism , Animals , Biomarkers/metabolism , Cerebral Cortex/metabolism , Cognition Disorders/diagnosis , Female , Hippocampus/metabolism , Male , Models, Animal , Rats, Inbred Strains , Rats, Long-Evans
5.
Front Aging Neurosci ; 6: 81, 2014.
Article in English | MEDLINE | ID: mdl-24847259

ABSTRACT

The LOU/C/Jall (LOU) rat strain is considered a model of healthy aging due to its increased longevity, maintenance of stable body weight (BW) throughout life and low incidence of age-related diseases. However, aging LOU rat cognitive and anxiety status has yet to be investigated. In the present study, male and female LOU rat cognitive performances (6-42 months) were assessed using novel object recognition and Morris Water Maze tasks. Recognition memory remained intact in all LOU rats up to 42 months of age. As for spatial memory, old LOU rat performed similarly as young animals for learning acquisition, reversal learning, and retention. While LOU rat BW remained stable despite aging, 20-month-old ad-libitum-fed (OAL) male Sprague Dawley rats become obese. We determined if long-term caloric restriction (LTCR) prevents age-related BW increase and cognitive deficits in this rat strain, as observed in the obesity-resistant LOU rats. Compared to young animals, recognition memory was impaired in OAL but intact in 20-month-old calorie-restricted (OCR) rats. Similarly, OAL spatial learning acquisition was impaired but LTCR prevented the deficits. Exacerbated stress responses may favor age-related cognitive decline. In the elevated plus maze and open field tasks, LOU and OCR rats exhibited high levels of exploratory activity whereas OAL rats displayed anxious behaviors. Expression of prodynorphin (Pdyn), an endogenous peptide involved in stress-related memory impairments, was increased in the hippocampus of OAL rats. Group 1 metabotropic glutamate receptor 5 and immediate early genes Homer 1a and Arc expression, both associated with successful cognitive aging, were unaltered in aging LOU rats but lower in OAL than OCR rats. Altogether, our results, supported by principal component analysis and correlation matrix, suggest that intact memory and low anxiety are associated with glutamatergic signaling and low Pdyn expression in the hippocampus of non-obese aging rats.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(1 Pt 1): 011911, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21405717

ABSTRACT

Acute ischemia (restriction in blood supply to part of the heart as a result of myocardial infarction) induces major changes in the electrophysiological properties of the ventricular tissue. Extracellular potassium concentration ([K(o)(+)]) increases in the ischemic zone, leading to an elevation of the resting membrane potential that creates an "injury current" (I(S)) between the infarcted and the healthy zone. In addition, the lack of oxygen impairs the metabolic activity of the myocytes and decreases ATP production, thereby affecting ATP-sensitive potassium channels (I(Katp)). Frequent complications of myocardial infarction are tachycardia, fibrillation, and sudden cardiac death, but the mechanisms underlying their initiation are still debated. One hypothesis is that these arrhythmias may be triggered by abnormal automaticity. We investigated the effect of ischemia on myocyte automaticity by performing a comprehensive bifurcation analysis (fixed points, cycles, and their stability) of a human ventricular myocyte model [K. H. W. J. ten Tusscher and A. V. Panfilov, Am. J. Physiol. Heart Circ. Physiol. 291, H1088 (2006)] as a function of three ischemia-relevant parameters [K(o)(+)], I(S), and I(Katp). In this single-cell model, we found that automatic activity was possible only in the presence of an injury current. Changes in [K(o)(+)] and I(Katp) significantly altered the bifurcation structure of I(S), including the occurrence of early-after depolarization. The results provide a sound basis for studying higher-dimensional tissue structures representing an ischemic heart.


Subject(s)
Heart Ventricles/pathology , Heart Ventricles/physiopathology , Models, Cardiovascular , Myocardial Ischemia/pathology , Myocardial Ischemia/physiopathology , Heart Ventricles/metabolism , Humans , KATP Channels/metabolism , Myocardial Ischemia/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...