Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 57(5): 1944-51, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24024973

ABSTRACT

An anthranilic acid series of allosteric thumb pocket 2 HCV NS5B polymerase inhibitors exhibited hindered rotation along a covalent bond axis, and the existence of atropisomer chirality was confirmed by NMR, HPLC analysis on chiral supports, and computational studies. A thorough understanding of the concerted rotational properties and the influence exerted by substituents involved in this steric phenomenon was attained through biophysical studies on a series of truncated analogues. The racemization half-life of a compound within this series was determined to be 69 min, which was consistent with a class 2 atropisomer (intermediate conformational exchange). It was further found by X-ray crystallography that one enantiomer of a compound bound to the intended HCV NS5B polymerase target whereas the mirror image atropisomer was able to bind to an unrelated HIV matrix target. Analogues were then identified that selectively inhibited the former. These studies highlight that atropisomer chirality can lead to distinct entities with specific properties, and the phenomenon of atropisomerism in drug discovery should be evaluated and appropriately managed.


Subject(s)
Antiviral Agents/pharmacology , HIV/drug effects , Hepacivirus/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Allosteric Regulation , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Chromatography, High Pressure Liquid , Crystallography, X-Ray , Hepacivirus/enzymology , Magnetic Resonance Spectroscopy , Stereoisomerism
2.
Bioorg Med Chem Lett ; 23(13): 3841-7, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23726345

ABSTRACT

We describe here the design, synthesis and biological evaluation of antiviral compounds acting against human rhinovirus (HRV). A series of aminothiazoles demonstrated pan-activity against the HRV genotypes screened and productive structure-activity relationships. A comprehensive investigational library was designed and performed allowing the identification of potent compounds with lower molecular weight and improved ADME profile. 31d-1, 31d-2, 31f showed good exposures in CD-1 mice. The mechanism of action was discovered to be a host target: the lipid kinase phosphatidylinositol 4-kinase III beta (PI4KIIIß). The identification of the pan-HRV active compound 31f combined with a structurally distinct literature compound T-00127-HEV1 allowed the assessment of target related tolerability of inhibiting this kinase for a short period of time in order to prevent HRV replication.


Subject(s)
Antiviral Agents/pharmacology , Drug Design , Rhinovirus/drug effects , Thiazoles/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry
3.
J Org Chem ; 70(26): 10765-73, 2005 Dec 23.
Article in English | MEDLINE | ID: mdl-16355998

ABSTRACT

[structures: see text] Tripeptide dienes containing an (1R,2S)-vinyl aminocyclopropylcarboxylate residue were cyclized to beta-strand scaffolds under ring-closing metathesis (RCM). Conformational factors, ligand effects, and reaction conditions were evaluated. A protocol was developed for the efficient synthesis of 15-membered ring peptides in high diastereomeric purity. These peptides are key synthetic precursors to antiviral agents that target the hepatitis C virus and represent the first class of clinically validated pharmaceutical agents that are synthesized in large scale using RCM.


Subject(s)
Oligopeptides/chemistry , Propane/analogs & derivatives , Catalysis , Magnetic Resonance Spectroscopy , Mass Spectrometry , Stereoisomerism
4.
J Org Chem ; 70(15): 5869-79, 2005 Jul 22.
Article in English | MEDLINE | ID: mdl-16018680

ABSTRACT

(1R,2S)-1-Amino-2-vinylcyclopropanecarboxylic acid (vinyl-ACCA) is a key building block in the synthesis of potent inhibitors of the hepatitis C virus NS3 protease such as BILN 2061, which was recently shown to dramatically reduce viral load after administration to patients infected with HCV genotype 1. We have developed a scalable process that delivers derivatives of this unusual amino acid in >99% ee. The strategy was based on the dialkylation of a glycine Schiff base using trans-1,4-dibromo-2-butene as an electrophile to produce racemic vinyl-ACCA, which was subsequently resolved using a readily available, inexpensive esterase enzyme (Alcalase 2.4L). Factors that affect diastereoselection in the initial dialkylation steps were examined and the conditions optimized to deliver the desired diastereomer selectively. Product inhibition, which was encountered during the enzymatic resolution step, initially resulted in prolonged cycle times. Enrichment of racemic vinyl-ACCA through a chemical resolution via diastereomeric salt formation or the use of forcing conditions in the enzymatic reaction both led to improvements in throughput and the development of a viable process. The chemistry described herein was scaled up to produce multikilogram quantities of this building block.


Subject(s)
Amino Acids, Cyclic/chemical synthesis , Protease Inhibitors/chemical synthesis , Viral Nonstructural Proteins/antagonists & inhibitors , Alkylation , Amino Acids, Cyclic/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Models, Chemical , Protease Inhibitors/pharmacology , Stereoisomerism , Viral Nonstructural Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...