Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Nat Chem Biol ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561545
2.
FEBS Lett ; 598(11): 1335-1353, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38485451

ABSTRACT

Our epithelium represents a battle ground against a variety of insults including pathogens and danger signals. It encodes multiple sensors that detect and respond to such insults, playing an essential role in maintaining and defending tissue homeostasis. One key set of defense mechanisms is our inflammasomes which drive innate immune responses including, sensing and responding to pathogen attack, through the secretion of pro-inflammatory cytokines and cell death. Identification of physiologically relevant triggers for inflammasomes has greatly influenced our ability to decipher the mechanisms behind inflammasome activation. Furthermore, identification of patient mutations within inflammasome components implicates their involvement in a range of epithelial diseases. This review will focus on exploring the roles of inflammasomes in epithelial immunity and cover: the diversity and differential expression of inflammasome sensors amongst our epithelial barriers, their ability to sense local infection and damage and the contribution of the inflammasomes to epithelial homeostasis and disease.


Subject(s)
Immunity, Innate , Inflammasomes , Inflammasomes/immunology , Inflammasomes/metabolism , Humans , Animals , Epithelium/immunology , Epithelium/metabolism , Epithelial Cells/immunology , Epithelial Cells/metabolism , Homeostasis/immunology
3.
Eur J Immunol ; 54(5): e2350515, 2024 May.
Article in English | MEDLINE | ID: mdl-38361219

ABSTRACT

Caspase-1 location in cells has been studied with fluorochrome-labeled inhibitors of caspase-1 (FLICA reagents). We report that FLICA reagents have limited cell-membrane permeability. This impacts experimental design as cells with intact membranes, including caspase-1 knockout cells, are not appropriate controls for cells with inflammasome-induced gasdermin D membrane pores.


Subject(s)
Caspase 1 , Caspase Inhibitors , Cell Membrane Permeability , Fluorescent Dyes , Inflammasomes , Macrophages , Caspase 1/metabolism , Animals , Macrophages/immunology , Macrophages/metabolism , Cell Membrane Permeability/drug effects , Mice , Inflammasomes/metabolism , Caspase Inhibitors/pharmacology , Mice, Knockout , Phosphate-Binding Proteins/metabolism , Humans
4.
Sci Signal ; 17(820): eabg8145, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38261657

ABSTRACT

Inflammasomes are multiprotein complexes that drive inflammation and contribute to protective immunity against pathogens and immune pathology in autoinflammatory diseases. Inflammasomes assemble when an inflammasome scaffold protein senses an activating signal and forms a signaling platform with the inflammasome adaptor protein ASC. The NLRP subfamily of NOD-like receptors (NLRs) includes inflammasome nucleators (such as NLRP3) and also NLRP12, which is genetically linked to familial autoinflammatory disorders that resemble diseases caused by gain-of-function NLRP3 mutants that generate a hyperactive NLRP3 inflammasome. We performed a screen to identify ASC inflammasome-nucleating proteins among NLRs that have the canonical pyrin-NACHT-LRR domain structure. Only NLRP3 and NLRP6 could initiate ASC polymerization to form "specks," and NLRP12 failed to nucleate ASC polymerization. However, wild-type NLRP12 inhibited ASC inflammasome assembly induced by wild-type and gain-of-function mutant NLRP3, an effect not seen with disease-associated NLRP12 mutants. The capacity of NLRP12 to suppress NLRP3 inflammasome assembly was limited to human NLRP3 and was not observed for wild-type murine NLRP3. Furthermore, peripheral blood mononuclear cells from patients with an NLRP12 mutant-associated inflammatory disorder produced increased amounts of the inflammatory cytokine IL-1ß in response to NLRP3 stimulation. Thus, our findings provide insights into NLRP12 biology and suggest that NLRP3 inhibitors in clinical trials for NLRP3-driven diseases may also be effective in treating NLRP12-associated autoinflammatory diseases.


Subject(s)
Hereditary Autoinflammatory Diseases , Inflammasomes , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing , Intracellular Signaling Peptides and Proteins , Leukocytes, Mononuclear , NLR Family, Pyrin Domain-Containing 3 Protein , Syndrome
5.
Clin Infect Dis ; 78(1): 94-97, 2024 01 25.
Article in English | MEDLINE | ID: mdl-37647624

ABSTRACT

We describe bedside-to-bench immunological and genetic elucidation of defective pyroptosis attributable to novel caspase 4 defect mediating pathogen-triggered inflammatory programmed cell death, in the setting of severe pneumonia and abscess-forming melioidosis in an overtly healthy host failing to clear Burkholderia pseudomallei infection, and how targeted adjunctive biological therapy led to a successful outcome.


Subject(s)
Burkholderia pseudomallei , Extracorporeal Membrane Oxygenation , Melioidosis , Humans , Melioidosis/drug therapy , Burkholderia pseudomallei/genetics , Interferon-gamma/genetics , Mutation
6.
Life Sci Alliance ; 6(10)2023 10.
Article in English | MEDLINE | ID: mdl-37558421

ABSTRACT

The noncanonical inflammasome is a signalling complex critical for cell defence against cytosolic Gram-negative bacteria. A key step in the human noncanonical inflammasome pathway involves unleashing the proteolytic activity of caspase-4 within this complex. Caspase-4 induces inflammatory responses by cleaving gasdermin-D (GSDMD) to initiate pyroptosis; however, the molecular mechanisms that activate caspase-4 and govern its capacity to cleave substrates remain poorly defined. Caspase-11, the murine counterpart of caspase-4, acquires protease activity within the noncanonical inflammasome by forming a dimer that self-cleaves at D285 to cleave GSDMD. These cleavage events trigger signalling via the NLRP3-ASC-caspase-1 axis, leading to downstream cleavage of the pro-IL-1ß cytokine precursor. Here, we show that caspase-4 first dimerises then self-cleaves at two sites-D270 and D289-in the interdomain linker to acquire full proteolytic activity, cleave GSDMD, and induce cell death. Surprisingly, caspase-4 dimerisation and self-cleavage at D289 generate a caspase-4 p34/p9 protease species that directly cleaves pro-IL-1ß, resulting in its maturation and secretion independently of the NLRP3 inflammasome in primary human myeloid and epithelial cells. Our study thus elucidates the key molecular events that underpin signalling by the caspase-4 inflammasome and identifies IL-1ß as a natural substrate of caspase-4.


Subject(s)
Caspases, Initiator , Gasdermins , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Humans , Mice , Caspase 1/metabolism , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phosphate-Binding Proteins/metabolism , Caspases, Initiator/metabolism , Gasdermins/metabolism
7.
Wellcome Open Res ; 7: 29, 2022.
Article in English | MEDLINE | ID: mdl-36072059

ABSTRACT

Background: Despite extensive work on macrophage heterogeneity, the mechanisms driving activation induced heterogeneity (AIH) in macrophages remain poorly understood. Here, we aimed to develop mathematical models to explore theoretical cellular states underpinning the empirically observed responses of macrophages following lipopolysaccharide (LPS) challenge. Methods: We obtained empirical data following primary and secondary responses to LPS in two in vitro cellular models (bone marrow-derived macrophages or BMDMs, and RAW 264.7 cells) and single-cell protein measurements for four key inflammatory mediators: TNF, IL-6, pro-IL-1ß, and NOS2, and used mathematical modelling to understand heterogeneity. Results: For these four factors, we showed that macrophage community AIH is dependent on LPS dose and that altered AIH kinetics in macrophages responding to a second LPS challenge underpin hypo-responsiveness to LPS. These empirical data can be explained by a mathematical three-state model including negative, positive, and non-responsive states (NRS), but they are also compatible with a four-state model that includes distinct reversibly NRS and non-responsive permanently states (NRPS). Our mathematical model, termed NoRM (Non-Responsive Macrophage) model identifies similarities and differences between BMDM and RAW 264.7 cell responses. In both cell types, transition rates between states in the NoRM model are distinct for each of the tested proteins and, crucially, macrophage hypo-responsiveness is underpinned by changes in transition rates to and from NRS. Conclusions: Overall, we provide a mathematical model for studying macrophage ecology and community dynamics that can be used to elucidate the role of phenotypically negative macrophage populations in AIH and, primary and secondary responses to LPS.

8.
Methods Mol Biol ; 2459: 29-37, 2022.
Article in English | MEDLINE | ID: mdl-35212951

ABSTRACT

Neutrophils are innate immune cells that play critical functions during infections through diverse mechanisms. One such mechanism, the generation of extracellular traps (NETs), enables direct bacterial killing during infections. We recently reported that the activation of the non-canonical inflammasomes in neutrophils allows for the generation of NETs and is an important host defence mechanism in vivo in response to intracellular Gram-negative bacterium. This process is dependent on inflammatory caspases and the cell death effector Gasdermin D. Here, we describe a simple approach to study the functions of the non-canonical inflammasome in murine neutrophils using microscopy and cellular fragmentation assays.


Subject(s)
Extracellular Traps , Inflammasomes , Animals , Caspases/metabolism , Extracellular Traps/metabolism , Inflammasomes/metabolism , Mice , Neutrophils/metabolism , Pyroptosis
9.
Methods Mol Biol ; 2459: 39-49, 2022.
Article in English | MEDLINE | ID: mdl-35212952

ABSTRACT

Gasdermin D (GSDMD) is a recently identified pore-forming protein that is crucial for the execution of pyroptosis, a highly inflammatory form of cell death. GSDMD contains an N-terminal and a C-terminal domain that are separated by a proteolysis-sensitive linker. Upon cleavage of this linker by inflammasome-activated caspases, the N-terminal domain of GSDMD oligomerizes and forms pores at the plasma membrane, allowing cell swelling and subsequently membrane rupture to mediate pyroptosis. GSDMD is a key substrate of inflammatory caspases downstream of inflammasome activation and is driving various pathologies. Here, we describe a simple method to study GSDMD cleavage following canonical inflammasome activation in murine primary macrophages and neutrophils and human cell lines using immunoblotting.


Subject(s)
Inflammasomes , Intracellular Signaling Peptides and Proteins , Animals , Humans , Inflammasomes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Neoplasm Proteins/metabolism , Phosphate-Binding Proteins/chemistry , Pyroptosis
10.
Methods Mol Biol ; 2459: 51-63, 2022.
Article in English | MEDLINE | ID: mdl-35212953

ABSTRACT

The non-canonical inflammasome is a signaling platform that allows for the detection of cytoplasmic lipopolysaccharides (LPS) in immune and non-immune cells. Upon detection of LPS, this inflammasome activates the signaling proteases caspase-4 and -5 (in humans) and caspase-11 (in mice). Inflammatory caspases activation leads to caspase self-processing and the cleavage of the pore-forming protein Gasdermin D (GSDMD). GSDMD N-terminal fragments oligomerize and form pores at the plasma membranes, leading to an inflammatory form of cell death called pyroptosis. Here, we describe a simple method to activate the non-canonical inflammasome in myeloid and epithelial cells and to measure its activity using cell death assay and immunoblotting.


Subject(s)
Inflammasomes , Intracellular Signaling Peptides and Proteins , Animals , Humans , Inflammasomes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Neoplasm Proteins/metabolism , Phosphate-Binding Proteins , Pyroptosis
11.
Annu Rev Immunol ; 40: 249-269, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35080918

ABSTRACT

Inflammasomes are inflammatory signaling complexes that provide molecular platforms to activate the protease function of inflammatory caspases. Caspases-1, -4, -5, and -11 are inflammatory caspases activated by inflammasomes to drive lytic cell death and inflammatory mediator production, thereby activating host-protective and pathological immune responses. Here, we comprehensively review the mechanisms that govern the activity of inflammatory caspases. We discuss inflammatory caspase activation and deactivation mechanisms, alongside the physiological importance of caspase activity kinetics. We also examine mechanisms of caspase substrate selection and how inflammasome and cell identities influence caspase activity and resultant inflammatory and pyroptotic cellular programs. Understanding how inflammatory caspases are regulated may offer new strategies for treating infection and inflammasome-driven disease.


Subject(s)
Caspases , Inflammasomes , Animals , Caspase 1/metabolism , Caspases/metabolism , Cell Death , Humans , Inflammasomes/metabolism , Pyroptosis
12.
Biochem Soc Trans ; 49(3): 1311-1324, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34060593

ABSTRACT

Innate immune responses are tightly regulated by various pathways to control infections and maintain homeostasis. One of these pathways, the inflammasome pathway, activates a family of cysteine proteases called inflammatory caspases. They orchestrate an immune response by cleaving specific cellular substrates. Canonical inflammasomes activate caspase-1, whereas non-canonical inflammasomes activate caspase-4 and -5 in humans and caspase-11 in mice. Caspases are highly specific enzymes that select their substrates through diverse mechanisms. During inflammation, caspase activity is responsible for the secretion of inflammatory cytokines and the execution of a form of lytic and inflammatory cell death called pyroptosis. This review aims to bring together our current knowledge of the biochemical processes behind inflammatory caspase activation, substrate specificity, and substrate signalling.


Subject(s)
Caspases/immunology , Cytokines/immunology , Inflammasomes/immunology , Inflammation/immunology , Signal Transduction/immunology , Animals , Caspases/metabolism , Cytokines/metabolism , Enzyme Activation/immunology , Humans , Inflammasomes/metabolism , Inflammation/metabolism , Pyroptosis/immunology , Substrate Specificity
13.
Nat Commun ; 11(1): 3276, 2020 06 24.
Article in English | MEDLINE | ID: mdl-32581219

ABSTRACT

The human non-canonical inflammasome controls caspase-4 activation and gasdermin-D-dependent pyroptosis in response to cytosolic bacterial lipopolysaccharide (LPS). Since LPS binds and oligomerizes caspase-4, the pathway is thought to proceed without dedicated LPS sensors or an activation platform. Here we report that interferon-induced guanylate-binding proteins (GBPs) are required for non-canonical inflammasome activation by cytosolic Salmonella or upon cytosolic delivery of LPS. GBP1 associates with the surface of cytosolic Salmonella seconds after bacterial escape from their vacuole, initiating the recruitment of GBP2-4 to assemble a GBP coat. The GBP coat then promotes the recruitment of caspase-4 to the bacterial surface and caspase activation, in absence of bacteriolysis. Mechanistically, GBP1 binds LPS with high affinity through electrostatic interactions. Our findings indicate that in human epithelial cells GBP1 acts as a cytosolic LPS sensor and assembles a platform for caspase-4 recruitment and activation at LPS-containing membranes as the first step of non-canonical inflammasome signaling.


Subject(s)
Caspases, Initiator/metabolism , Cytosol/microbiology , GTP-Binding Proteins/metabolism , Lipopolysaccharides/metabolism , Salmonella/metabolism , Cell Line , Enzyme Activation , Epithelial Cells/metabolism , HeLa Cells , Humans , Inflammasomes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Phosphate-Binding Proteins/metabolism , Protein Binding , Pyroptosis , Static Electricity
14.
Life Sci Alliance ; 3(6)2020 06.
Article in English | MEDLINE | ID: mdl-32345661

ABSTRACT

Caspase-1 drives a lytic inflammatory cell death named pyroptosis by cleaving the pore-forming cell death executor gasdermin-D (GSDMD). Gsdmd deficiency, however, only delays cell lysis, indicating that caspase-1 controls alternative cell death pathways. Here, we show that in the absence of GSDMD, caspase-1 activates apoptotic initiator and executioner caspases and triggers a rapid progression into secondary necrosis. GSDMD-independent cell death required direct caspase-1-driven truncation of Bid and generation of caspase-3 p19/p12 by either caspase-8 or caspase-9. tBid-induced mitochondrial outer membrane permeabilization was also required to drive SMAC release and relieve inhibitor of apoptosis protein inhibition of caspase-3, thereby allowing caspase-3 auto-processing to the fully active p17/p12 form. Our data reveal that cell lysis in inflammasome-activated Gsdmd-deficient cells is caused by a synergistic effect of rapid caspase-1-driven activation of initiator caspases-8/-9 and Bid cleavage, resulting in an unusually fast activation of caspase-3 and immediate transition into secondary necrosis. This pathway might be advantageous for the host in counteracting pathogen-induced inhibition of GSDMD but also has implications for the use of GSDMD inhibitors in immune therapies for caspase-1-dependent inflammatory disease.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , BH3 Interacting Domain Death Agonist Protein/deficiency , Caspase 1/deficiency , Intracellular Signaling Peptides and Proteins/deficiency , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Phosphate-Binding Proteins/deficiency , Signal Transduction/genetics , Animals , Apoptosis/genetics , BH3 Interacting Domain Death Agonist Protein/genetics , Caspase 1/genetics , Cells, Cultured , Gene Editing , Gene Knockout Techniques , Inflammasomes/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondrial Membranes/metabolism , Necrosis/genetics , Necrosis/metabolism , Phosphate-Binding Proteins/genetics , Pyroptosis/genetics , Transfection
15.
Nat Chem Biol ; 15(6): 556-559, 2019 06.
Article in English | MEDLINE | ID: mdl-31086327

ABSTRACT

Inhibition of the NLRP3 inflammasome is a promising strategy for the development of new treatments for inflammatory diseases. MCC950 is a potent and specific small-molecule inhibitor of the NLRP3 pathway, but its molecular target is not defined. Here, we show that MCC950 directly interacts with the Walker B motif within the NLRP3 NACHT domain, thereby blocking ATP hydrolysis and inhibiting NLRP3 activation and inflammasome formation.


Subject(s)
Adenosine Triphosphate/antagonists & inhibitors , Heterocyclic Compounds, 4 or More Rings/pharmacology , Inflammasomes/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Sulfones/pharmacology , Adenosine Triphosphate/metabolism , Binding Sites/drug effects , Furans , Heterocyclic Compounds, 4 or More Rings/chemistry , Humans , Hydrolysis/drug effects , Indenes , Inflammasomes/biosynthesis , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sulfonamides , Sulfones/chemistry
16.
FASEB J ; 33(6): 7437-7450, 2019 06.
Article in English | MEDLINE | ID: mdl-30869997

ABSTRACT

Uropathogenic Escherichia coli (UPEC) is the major cause of urinary tract infections (UTIs). The multidrug-resistant E. coli sequence type 131 (ST131) clone is a serious threat to human health, yet its effects on immune responses are not well understood. Here we screened a panel of ST131 isolates, finding that only strains expressing the toxin hemolysin A (HlyA) killed primary human macrophages and triggered maturation of the inflammasome-dependent cytokine IL-1ß. Using a representative strain, the requirement for the hlyA gene in these responses was confirmed. We also observed considerable heterogeneity in levels of cell death initiated by different HlyA+ve ST131 isolates, and this correlated with secreted HlyA levels. Investigation into the biological significance of this variation revealed that an ST131 strain producing low levels of HlyA initiated cell death that was partly dependent on the nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, with this response being associated with a host-protective role in a mouse UTI model. When the same ST131 strain was engineered to overexpress high HlyA levels, macrophage cell death occurred even when NLRP3 function was abrogated, and bladder colonization was significantly increased. Thus, variation in HlyA expression in UPEC affects mechanisms by which macrophages die, as well as host susceptibility vs. resistance to colonization.-Murthy, A. M. V., Sullivan, M. J., Nhu, N. T. K., Lo, A. W., Phan, M.-D., Peters, K. M., Boucher, D., Schroder, K., Beatson, S. A., Ulett, G. C., Schembri, M. A., Sweet, M. J. Variation in hemolysin A expression between uropathogenic Escherichia coli isolates determines NLRP3-dependent vs. -independent macrophage cell death and host colonization.


Subject(s)
Cell Death , Escherichia coli Proteins/metabolism , Hemolysin Proteins/metabolism , Host-Pathogen Interactions , Macrophages/cytology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Uropathogenic Escherichia coli/metabolism , Animals , Escherichia coli Infections/microbiology , Humans , Mice , Urinary Tract Infections/microbiology
18.
Bio Protoc ; 9(17): e3357, 2019 Sep 05.
Article in English | MEDLINE | ID: mdl-33654856

ABSTRACT

Neutrophils are critical immune cells that protect our body against invading pathogens. They generate antibacterial DNA structures called neutrophil extracellular traps (NET). Recently we identified a new mechanism that enables NET formation. We observed that following recognition of lipopolysaccharides, inflammatory caspases cleave Gasdermin D and enable NET generation ( Chen et al., 2018 ). This protocol describes how we purify neutrophil nuclei to visualize NET formation by live microscopy. After neutrophil purification from murine bone marrow, neutrophils are lysed in a hypotonic buffer using a nitrogen cavitation device to prevent lysis of neutrophil granules and subsequent contamination by granules proteases. Lysed neutrophils are then centrifuged, and nuclei are counted. The protocol described here is straightforward and enables the study of early changes happening in the nuclei of neutrophils undergoing NETosis with limited contamination by granule proteases.

19.
J Leukoc Biol ; 105(2): 401-410, 2019 02.
Article in English | MEDLINE | ID: mdl-30368901

ABSTRACT

Inflammasomes are signaling hubs that activate inflammatory caspases to drive cytokine maturation and cell lysis. Inflammasome activation by Salmonella Typhimurium infection or Salmonella-derived molecules is extensively studied in murine myeloid cells. Salmonella-induced inflammasome signaling in human innate immune cells, is however, poorly characterized. Here, we show that Salmonella mutation to inactivate the Salmonella pathogenicity island-2 type III secretion system (SPI2 T3SS) potentiates S. Typhimurium-induced inflammasome responses from primary human macrophages, resulting in strong IL-1ß production and macrophage death. Inactivation of the SPI1 T3SS diminished human macrophage responses to WT and ΔSPI2 Salmonella. Salmonella ΔSPI2 elicited a mixed inflammasome response from human myeloid cells, in which NLR family CARD-domain containing protein 4 (NLRC4) and NLR family PYRIN-domain containing protein 3 (NLRP3) perform somewhat redundant functions in generating IL-1ß and inducing pyroptosis. Our data suggest that Salmonella employs the SPI2 T3SS to subvert SPI1-induced NLRP3 and NLRC4 inflammasome responses in human primary macrophages, in a species-specific immune evasion mechanism.


Subject(s)
CARD Signaling Adaptor Proteins/metabolism , Calcium-Binding Proteins/metabolism , Genomic Islands , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Salmonella typhimurium/genetics , Animals , Cell Death , Humans , Interleukin-1beta/metabolism , Macrophages/metabolism , Macrophages/microbiology , Mice, Inbred C57BL , Myeloid Cells/metabolism , Pyroptosis
20.
Life Sci Alliance ; 1(6): e201800237, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30564782

ABSTRACT

Caspase-11 is a cytosolic sensor and protease that drives innate immune responses to the bacterial cell wall component, LPS. Caspase-11 provides defence against cytosolic Gram-negative bacteria; however, excessive caspase-11 responses contribute to murine endotoxic shock. Upon sensing LPS, caspase-11 assembles a higher order structure called the non-canonical inflammasome that enables the activation of caspase-11 protease function, leading to gasdermin D cleavage and cell death. The mechanism by which caspase-11 acquires protease function is, however, poorly defined. Here, we show that caspase-11 dimerization is necessary and sufficient for eliciting basal caspase-11 protease function, such as the ability to auto-cleave. We further show that during non-canonical inflammasome signalling, caspase-11 self-cleaves at site (D285) within the linker connecting the large and small enzymatic subunits. Self-cleavage at the D285 site is required to generate the fully active caspase-11 protease (proposed here to be p32/p10) that mediates gasdermin D cleavage, macrophage death, and NLRP3-dependent IL-1ß production. This study provides a detailed molecular mechanism by which LPS induces caspase-11-driven inflammation and cell death to provide host defence against cytosolic bacterial infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...