Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 58(13): 5670-5684, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38501683

ABSTRACT

PFASs are linked to serious health and environmental concerns. Among their widespread applications, PFASs are known to be used in food packaging and directly contribute to human exposure. However, information about PFASs in food packaging is scattered. Therefore, we systematically map the evidence on PFASs detected in migrates and extracts of food contact materials and provide an overview of available hazard and biomonitoring data. Based on the FCCmigex database, 68 PFASs have been identified in various food contact materials, including paper, plastic, and coated metal, by targeted and untargeted analyses. 87% of these PFASs belong to the perfluorocarboxylic acids and fluorotelomer-based compounds. Trends in chain length demonstrate that long-chain perfluoroalkyl acids continue to be found, despite years of global efforts to reduce the use of these substances. We utilized ToxPi to illustrate that hazard data are available for only 57% of the PFASs that have been detected in food packaging. For those PFASs for which toxicity testing has been performed, many adverse outcomes have been reported. The data and knowledge gaps presented here support international proposals to restrict PFASs as a group, including their use in food contact materials, to protect human and environmental health.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Humans , Fluorocarbons/analysis , Food Packaging , Food , Water Pollutants, Chemical/analysis
2.
Environ Int ; 180: 108161, 2023 10.
Article in English | MEDLINE | ID: mdl-37758599

ABSTRACT

Food contact materials (FCMs) and food contact articles are ubiquitous in today's globalized food system. Chemicals migrate from FCMs into foodstuffs, so called food contact chemicals (FCCs), but current regulatory requirements do not sufficiently protect public health from hazardous FCCs because only individual substances used to make FCMs are tested and mostly only for genotoxicity while endocrine disruption and other hazard properties are disregarded. Indeed, FCMs are a known source of a wide range of hazardous chemicals, and they likely contribute to highly prevalent non-communicable diseases. FCMs can also include non-intentionally added substances (NIAS), which often are unknown and therefore not subject to risk assessment. To address these important shortcomings, we outline how the safety of FCMs may be improved by (1) testing the overall migrate, including (unknown) NIAS, of finished food contact articles, and (2) expanding toxicological testing beyond genotoxicity to multiple endpoints associated with non-communicable diseases relevant to human health. To identify mechanistic endpoints for testing, we group chronic health outcomes associated with chemical exposure into Six Clusters of Disease (SCOD) and we propose that finished food contact articles should be tested for their impacts on these SCOD. Research should focus on developing robust, relevant, and sensitive in-vitro assays based on mechanistic information linked to the SCOD, e.g., through Adverse Outcome Pathways (AOPs) or Key Characteristics of Toxicants. Implementing this vision will improve prevention of chronic diseases that are associated with hazardous chemical exposures, including from FCMs.


Subject(s)
Food Contamination , Noncommunicable Diseases , Humans , Food Contamination/analysis , Public Health , Food Packaging , Food , Hazardous Substances/toxicity
3.
Crit Rev Food Sci Nutr ; 63(28): 9425-9435, 2023.
Article in English | MEDLINE | ID: mdl-35585831

ABSTRACT

Food packaging is important for today's globalized food system, but food contact materials (FCMs) can also be a source of hazardous chemicals migrating into foodstuffs. Assessing the impacts of FCMs on human health requires a comprehensive identification of the chemicals they contain, the food contact chemicals (FCCs). We systematically compiled the "database on migrating and extractable food contact chemicals" (FCCmigex) using information from 1210 studies. We found that to date 2881 FCCs have been detected, in a total of six FCM groups (Plastics, Paper & Board, Metal, Multi-materials, Glass & Ceramic, and Other FCMs). 65% of these detected FCCs were previously not known to be used in FCMs. Conversely, of the more than 12'000 FCCs known to be used, only 1013 are included in the FCCmigex database. Plastic is the most studied FCM with 1975 FCCs detected. Our findings expand the universe of known FCCs to 14,153 chemicals. This knowledge contributes to developing non-hazardous FCMs that lead to safer food and support a circular economy.


Subject(s)
Food Contamination , Food Packaging , Humans , Food Contamination/analysis , Hazardous Substances/analysis , Databases, Factual , Plastics
4.
J Hazard Mater ; 437: 129167, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35897167

ABSTRACT

The EU Chemicals Strategy for Sustainability (CSS) aims at removing the most harmful chemicals from consumer products, including from food contact materials (FCMs). If implemented as intended, the CSS has the potential to significantly improve the protection of public health by banning the use of chemicals of concern that are carcinogenic, mutagenic, or toxic to reproduction (CMRs), or persistent and bioaccumulative, or endocrine-disrupting chemicals (EDCs) in FCMs. However, until now an overview of such food contact chemicals of concern (FCCoCs) has not been available, because the CSS is fairly recent. Therefore, we here systematically analyze the food contact chemicals listed for intentional use in FCMs and identify known FCCoCs. We present a list of 388 FCCoCs that should be phased-out from use. Of these, 352 are CMRs, four are per- and polyfluoroalkyl substances (PFAS), and 127 have empirical evidence for presence in FCMs. Importantly, 30 FCCoCs with evidence for presence are monomers of which 22 have evidence for migration into foodstuff showing that monomers in FCMs indeed become relevant for human exposure. Our findings justify moving away from a risk- towards a hazard-based approach to regulation of chemicals in FCMs.


Subject(s)
Dietary Exposure/statistics & numerical data , Food Contamination , Hazardous Substances , Endocrine Disruptors/analysis , Endocrine Disruptors/toxicity , European Union , Food , Food Packaging , Humans , Persistent Organic Pollutants , Public Health , Reproduction
5.
Environ Health ; 19(1): 25, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32122363

ABSTRACT

Food packaging is of high societal value because it conserves and protects food, makes food transportable and conveys information to consumers. It is also relevant for marketing, which is of economic significance. Other types of food contact articles, such as storage containers, processing equipment and filling lines, are also important for food production and food supply. Food contact articles are made up of one or multiple different food contact materials and consist of food contact chemicals. However, food contact chemicals transfer from all types of food contact materials and articles into food and, consequently, are taken up by humans. Here we highlight topics of concern based on scientific findings showing that food contact materials and articles are a relevant exposure pathway for known hazardous substances as well as for a plethora of toxicologically uncharacterized chemicals, both intentionally and non-intentionally added. We describe areas of certainty, like the fact that chemicals migrate from food contact articles into food, and uncertainty, for example unidentified chemicals migrating into food. Current safety assessment of food contact chemicals is ineffective at protecting human health. In addition, society is striving for waste reduction with a focus on food packaging. As a result, solutions are being developed toward reuse, recycling or alternative (non-plastic) materials. However, the critical aspect of chemical safety is often ignored. Developing solutions for improving the safety of food contact chemicals and for tackling the circular economy must include current scientific knowledge. This cannot be done in isolation but must include all relevant experts and stakeholders. Therefore, we provide an overview of areas of concern and related activities that will improve the safety of food contact articles and support a circular economy. Our aim is to initiate a broader discussion involving scientists with relevant expertise but not currently working on food contact materials, and decision makers and influencers addressing single-use food packaging due to environmental concerns. Ultimately, we aim to support science-based decision making in the interest of improving public health. Notably, reducing exposure to hazardous food contact chemicals contributes to the prevention of associated chronic diseases in the human population.


Subject(s)
Food Contamination/analysis , Food Packaging/methods , Hazardous Substances/adverse effects , Humans , Plastics/adverse effects
6.
Environ Health Perspect ; 126(8): 84502, 2018 08.
Article in English | MEDLINE | ID: mdl-30235423

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) are man-made chemicals that contain at least one perfluoroalkyl moiety, [Formula: see text]. To date, over 4,000 unique PFASs have been used in technical applications and consumer products, and some of them have been detected globally in human and wildlife biomonitoring studies. Because of their extraordinary persistence, human and environmental exposure to PFASs will be a long-term source of concern. Some PFASs such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) have been investigated extensively and thus regulated, but for many other PFASs, knowledge about their current uses and hazards is still very limited or missing entirely. To address this problem and prepare an action plan for the assessment and management of PFASs in the coming years, a group of more than 50 international scientists and regulators held a two-day workshop in November, 2017. The group identified both the respective needs of and common goals shared by the scientific and the policy communities, made recommendations for cooperative actions, and outlined how the science-policy interface regarding PFASs can be strengthened using new approaches for assessing and managing highly persistent chemicals such as PFASs. https://doi.org/10.1289/EHP4158.


Subject(s)
Environmental Exposure/prevention & control , Environmental Pollutants , Environmental Pollution/prevention & control , Fluorocarbons , Environmental Monitoring , Humans
7.
Environ Sci Technol ; 51(8): 4482-4493, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28323424

ABSTRACT

Here a new global emission inventory of C4-C10 perfluoroalkanesulfonic acids (PFSAs) from the life cycle of perfluorooctanesulfonyl fluoride (POSF)-based products in 1958-2030 is presented. In particular, we substantially improve and expand the previous frameworks by incorporating missing pieces (e.g., emissions to soil through land treatment, overlooked precursors) and updating parameters (e.g., emission factors, degradation half-lives). In 1958-2015, total direct and indirect emissions of perfluorooctanesulfonic acid (PFOS) are estimated as 1228-4930 tonnes, and emissions of PFOS precursors are estimated as 1230-8738 tonnes and approximately 670 tonnes for x-perfluorooctanesulfonamides/sulfonamido ethanols (xFOSA/Es) and POSF, respectively. Most of these emissions occurred between 1958 and 2002, followed by a substantial decrease. This confirms the positive effect of the ongoing transition to phase out POSF-based products, although this transition may still require substantial time and cause substantial additional releases of PFOS (8-153 tonnes) and xFOSA/Es (4-698 tonnes) in 2016 to 2030. The modeled environmental concentrations obtained by coupling the emission inventory and a global multimedia mass-balance model generally agree well with reported field measurements, suggesting that the inventory captures the actual emissions of PFOS and xFOSA/Es for the time being despite remaining uncertainties. Our analysis of the key uncertainties and open questions of and beyond the inventory shows that, among others, degradation of side-chain fluorinated polymers in the environment and landfills can be a long-term, (potentially) substantial source of PFOS.


Subject(s)
Fluorocarbons , Models, Theoretical , Environment , Environmental Monitoring , Soil
8.
Sci Total Environ ; 580: 1014-1026, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28024751

ABSTRACT

Freshwater heat emissions from power plants with once-through cooling systems constitute one of many environmental pressures related to the thermoelectric power industry. The objective of this work was to obtain high resolution, operational characterization factors (CF) for the impact of heat emissions on ecosystem quality, and carry out a comprehensive, spatially, temporally and technologically differentiated damage-based environmental assessment of global freshwater thermal pollution. The aggregation of CFs on a watershed level results in 12.5% lower annual impacts globally and even smaller differences for the most crucial watersheds and months, so watershed level CFs are recommended when the exact emission site within the basin is unknown. Long-range impacts account for almost 90% of the total global impacts. The Great Lakes, several Mississippi subbasins, the Danube, and the Yangtze are among the most thermally impacted watersheds globally, receiving heat emissions from predominantly coal-fuelled and nuclear power plants. Globally, over 80% of the global annual impacts come from power plants constructed during or before the 1980s. While the impact-weighted mean age of the power plants in the Mississippi ranges from 38 to 51years, in Chinese watersheds including the Yangtze, the equivalent range is only 15 to 22years, reflecting a stark contrast in thermal pollution mitigation approaches. With relatively high shares of total capacity from power plants with once-through freshwater cooling, and tracing a large part of the Danube, 1kWh of net electricity mix is the most impactful in Hungary, Bulgaria and Serbia. Monthly CFs are provided on a grid cell level and on a watershed level for use in Life Cycle Assessment. The impacts per generating unit are also provided, as part of our effort to make available a global dataset of thermoelectric power plant emissions and impacts.

SELECTION OF CITATIONS
SEARCH DETAIL
...