Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 132024 Apr 30.
Article in English | MEDLINE | ID: mdl-38686795

ABSTRACT

Enhancers are critical for regulating tissue-specific gene expression, and genetic variants within enhancer regions have been suggested to contribute to various cancer-related processes, including therapeutic resistance. However, the precise mechanisms remain elusive. Using a well-defined drug-gene pair, we identified an enhancer region for dihydropyrimidine dehydrogenase (DPD, DPYD gene) expression that is relevant to the metabolism of the anti-cancer drug 5-fluorouracil (5-FU). Using reporter systems, CRISPR genome-edited cell models, and human liver specimens, we demonstrated in vitro and vivo that genotype status for the common germline variant (rs4294451; 27% global minor allele frequency) located within this novel enhancer controls DPYD transcription and alters resistance to 5-FU. The variant genotype increases recruitment of the transcription factor CEBPB to the enhancer and alters the level of direct interactions between the enhancer and DPYD promoter. Our data provide insight into the regulatory mechanisms controlling sensitivity and resistance to 5-FU.


Subject(s)
Dihydrouracil Dehydrogenase (NADP) , Enhancer Elements, Genetic , Epigenesis, Genetic , Fluorouracil , Humans , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Dihydrouracil Dehydrogenase (NADP)/genetics , Dihydrouracil Dehydrogenase (NADP)/metabolism , Fluorouracil/pharmacology , Fluorouracil/metabolism , Germ-Line Mutation
2.
bioRxiv ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-37961517

ABSTRACT

Enhancers are critical for regulating tissue-specific gene expression, and genetic variants within enhancer regions have been suggested to contribute to various cancer-related processes, including therapeutic resistance. However, the precise mechanisms remain elusive. Using a well-defined drug-gene pair, we identified an enhancer region for dihydropyrimidine dehydrogenase (DPD, DPYD gene) expression that is relevant to the metabolism of the anti-cancer drug 5-fluorouracil (5-FU). Using reporter systems, CRISPR genome edited cell models, and human liver specimens, we demonstrated in vitro and vivo that genotype status for the common germline variant (rs4294451; 27% global minor allele frequency) located within this novel enhancer controls DPYD transcription and alters resistance to 5-FU. The variant genotype increases recruitment of the transcription factor CEBPB to the enhancer and alters the level of direct interactions between the enhancer and DPYD promoter. Our data provide insight into the regulatory mechanisms controlling sensitivity and resistance to 5-FU.

3.
Genome Biol ; 24(1): 178, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37537644

ABSTRACT

Differential gene expression in bulk transcriptomics data can reflect change of transcript abundance within a cell type and/or change in the proportions of cell types. Expression deconvolution methods can help differentiate these scenarios. BEDwARS is a Bayesian deconvolution method designed to address differences between reference signatures of cell types and corresponding true signatures underlying bulk transcriptomic profiles. BEDwARS is more robust to noisy reference signatures and outperforms leading in-class methods for estimating cell type proportions and signatures. Application of BEDwARS to dihydropyridine dehydrogenase deficiency identified the possible involvement of ciliopathy and impaired translational control in the etiology of the disorder.


Subject(s)
Gene Expression Profiling , Transcriptome , Bayes Theorem , Gene Expression Profiling/methods
4.
Genomics Proteomics Bioinformatics ; 20(1): 87-100, 2022 02.
Article in English | MEDLINE | ID: mdl-34555496

ABSTRACT

Proximity labeling catalyzed by promiscuous enzymes, such as APEX2, has emerged as a powerful approach to characterize multiprotein complexes and protein-protein interactions. However, current methods depend on the expression of exogenous fusion proteins and cannot be applied to identify proteins surrounding post-translationally modified proteins. To address this limitation, we developed a new method to label proximal proteins of interest by antibody-mediated protein A-ascorbate peroxidase 2 (pA-APEX2) labeling (AMAPEX). In this method, a modified protein is bound in situ by a specific antibody, which then tethers a pA-APEX2 fusion protein. Activation of APEX2 labels the nearby proteins with biotin; the biotinylated proteins are then purified using streptavidin beads and identified by mass spectrometry. We demonstrated the utility of this approach by profiling the proximal proteins of histone modifications including H3K27me3, H3K9me3, H3K4me3, H4K5ac, and H4K12ac, as well as verifying the co-localization of these identified proteins with bait proteins by published ChIP-seq analysis and nucleosome immunoprecipitation. Overall, AMAPEX is an efficient method to identify proteins that are proximal to modified histones.


Subject(s)
Histones , Proteome , Ascorbate Peroxidases/genetics , Ascorbate Peroxidases/metabolism , Biotin/chemistry , Biotin/metabolism , Biotinylation , Histone Code , Histones/metabolism , Nucleosomes , Proteome/metabolism , Staphylococcal Protein A/metabolism , Streptavidin/metabolism
5.
Genome Biol ; 22(1): 19, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33413550

ABSTRACT

BACKGROUND: Metastatic progress is the primary cause of death in most cancers, yet the regulatory dynamics driving the cellular changes necessary for metastasis remain poorly understood. Multi-omics approaches hold great promise for addressing this challenge; however, current analysis tools have limited capabilities to systematically integrate transcriptomic, epigenomic, and cistromic information to accurately define the regulatory networks critical for metastasis. RESULTS: To address this limitation, we use a purposefully generated cellular model of colon cancer invasiveness to generate multi-omics data, including expression, accessibility, and selected histone modification profiles, for increasing levels of invasiveness. We then adopt a rigorous probabilistic framework for joint inference from the resulting heterogeneous data, along with transcription factor binding profiles. Our approach uses probabilistic graphical models to leverage the functional information provided by specific epigenomic changes, models the influence of multiple transcription factors simultaneously, and automatically learns the activating or repressive roles of cis-regulatory events. Global analysis of these relationships reveals key transcription factors driving invasiveness, as well as their likely target genes. Disrupting the expression of one of the highly ranked transcription factors JunD, an AP-1 complex protein, confirms functional relevance to colon cancer cell migration and invasion. Transcriptomic profiling confirms key regulatory targets of JunD, and a gene signature derived from the model demonstrates strong prognostic potential in TCGA colorectal cancer data. CONCLUSIONS: Our work sheds new light into the complex molecular processes driving colon cancer metastasis and presents a statistically sound integrative approach to analyze multi-omics profiles of a dynamic biological process.


Subject(s)
Neoplasm Metastasis/genetics , Neoplasms/genetics , Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Epigenomics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Histones , Humans , Prognosis , Proto-Oncogene Proteins c-jun/genetics , Transcription Factor AP-1 , Transcription Factors/metabolism , Transcriptome
6.
J Cell Sci ; 121(Pt 4): 466-76, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18211963

ABSTRACT

Candida albicans, the most prevalent fungal pathogen of humans, grows with multiple morphologies. The dynamics of nuclear movement are similar in wild-type yeast and pseudohyphae: nuclei divide across the bud neck. By contrast, in hyphae, nuclei migrate 10-20 microm into the growing germ tube before dividing. We analyzed the role of the dynein-dynactin complex in hyphal and yeast cells using time-lapse fluorescence microscopy. Cells lacking the heavy chain of cytoplasmic dynein or the p150(Glued) subunit of dynactin were defective in the position and orientation of the spindle. Hyphal cells often failed to deliver a nucleus to the daughter cell, resulting in defects in morphogenesis. Under yeast growth conditions, cultures included a mixture of yeast and pseudohyphal-like cells that exhibited distinctive defects in nuclear dynamics: in yeast, nuclei divided within the mother cell, and the spindle position checkpoint protein Bub2p ensured the delivery of the daughter nucleus to the daughter cell before cytokinesis; in pseudohyphal-like cells, pre-mitotic nuclei migrated into the daughter and no checkpoint ensured return of a nucleus to the mother cell before cytokinesis. Analysis of double mutants indicated that Bub2p also mediated the pre-anaphase arrest and polarization of pseudohyphal-like cells. Thus, Bub2p has two distinct roles in C. albicans cells lacking dynein: it mediates pre-anaphase arrest and it coordinates spindle disassembly with mitotic exit.


Subject(s)
Candida albicans/metabolism , Cell Cycle Proteins/metabolism , Dyneins/metabolism , Fungal Proteins/metabolism , Candida albicans/cytology , Candida albicans/growth & development , Cell Cycle/genetics , Cell Cycle/physiology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/physiology , Cell Nucleus/metabolism , Dyneins/genetics , Dyneins/physiology , Fungal Proteins/genetics , Fungal Proteins/physiology , Immunoblotting , Mitosis , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...