Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Light Sci Appl ; 7: 82, 2018.
Article in English | MEDLINE | ID: mdl-30393535

ABSTRACT

We demonstrate edge-emitting exciton-polariton (polariton) laser operation from 5 to 300 K and polariton amplifiers based on polariton modes within ZnO waveguides. The guided mode dispersion below and above the lasing threshold is directly measured using gratings placed on top of the sample, fully demonstrating the polaritonic nature of the lasing modes. The threshold is found to be smaller than that expected for radiative polaritons in planar ZnO microcavities below 150 K and comparable above. These results open up broad perspectives for guided polaritonics by enabling easier and more straightforward implementation of polariton integrated circuits that exploit fast propagating polaritons, and, possibly, topological protection.

2.
Phys Rev Lett ; 110(19): 196406, 2013 May 10.
Article in English | MEDLINE | ID: mdl-23705728

ABSTRACT

We report exciton-polariton condensation in a new family of fully hybrid ZnO-based microcavity demonstrating the best-quality ZnO material available (a bulk substrate), a large quality factor (~4000) and large Rabi splittings (~240 meV). Condensation is achieved between 4 and 300 K and for excitonic fractions ranging between 17% and 96%, which corresponds to a tuning of the exciton-polariton mass, lifetime, and interaction constant by 1 order of magnitude. We demonstrate mode switching between polariton branches allowing, just by controlling the pumping power, to tune the photonic fraction by a factor of 4.

3.
Opt Express ; 18(4): 3693-9, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-20389379

ABSTRACT

We demonstrate an easy-to-implement scheme for fluorescence enhancement and observation volume reduction using photonic crystals (PhCs) as substrates for microscopy. By normal incidence coupling to slow 2D-PhC guided modes, a 65 fold enhancement in the excitation is achieved in the near field region (100 nm deep and 1 microm wide) of the resonant mode. Such large enhancement together with the high spatial resolution makes this device an excellent substrate for fluorescence microscopies.


Subject(s)
Contrast Media/chemistry , Crystallization/methods , Fluorescent Dyes/chemistry , Image Enhancement/methods , Microscopy, Fluorescence/methods , Contrast Media/analysis , Fluorescent Dyes/analysis , Surface Properties
4.
Opt Express ; 15(12): 7551-6, 2007 Jun 11.
Article in English | MEDLINE | ID: mdl-19547080

ABSTRACT

We report on the continuous-wave operation of a band edge laser at room temperature near 1.55 mum in an InGaAs/InP photonic crystal. A flat dispersion band-edge photonic mode is used for surface normal operation. The photonic crystal slab is integrated onto a Silicon chip by means of Au/In bonding technology, which combines two advantages, efficient heat sinking and broad band reflectivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...