Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Vis Exp ; (181)2022 03 24.
Article in English | MEDLINE | ID: mdl-35404343

ABSTRACT

A rat glioblastoma model to mimic chemo-radiation treatment of human glioblastoma in the clinic was previously established. Similar to the clinical treatment, computed tomography (CT) and magnetic resonance imaging (MRI) were combined during the treatment-planning process. Positron emission tomography (PET) imaging was subsequently added to implement sub-volume boosting using a micro-irradiation system. However, combining three imaging modalities (CT, MRI, and PET) using a micro-irradiation system proved to be labor-intensive because multimodal imaging, treatment planning, and dose delivery have to be completed sequentially in the preclinical setting. This also results in a workflow that is more prone to human error. Therefore, a user-friendly algorithm to further optimize preclinical multimodal imaging-based radiation treatment planning was implemented. This software tool was used to evaluate the accuracy and efficiency of dose painting radiation therapy with micro-irradiation by using an in silico study design. The new methodology for dose painting radiation therapy is superior to the previously described method in terms of accuracy, time efficiency, and intra- and inter-user variability. It is also an important step towards the implementation of inverse treatment planning on micro-irradiators, where forward planning is still commonly used, in contrast to clinical systems.


Subject(s)
Glioblastoma , Animals , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Glioblastoma/radiotherapy , Magnetic Resonance Imaging/methods , Multimodal Imaging/methods , Positron-Emission Tomography/methods , Radiotherapy Planning, Computer-Assisted/methods , Rats , Tomography, X-Ray Computed/methods
2.
Neuromodulation ; 25(3): 461-470, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35177376

ABSTRACT

BACKGROUND: Vagus nerve stimulation (VNS) is an adjunctive therapy for drug-resistant epilepsy. Noninvasive evoked potential recordings in laryngeal muscles (LMEPs) innervated by vagal branches may provide a marker to assess effective vagal nerve fiber activation. We investigated VNS-induced LMEPs in patients with epilepsy in acute and chronic settings. MATERIALS AND METHODS: A total of 17 of 25 patients underwent LMEP recordings at initiation of therapy (acute group); 15 of 25 patients after one year of VNS (chronic group); and 7 of 25 patients were tested at both time points (acute + chronic group). VNS-induced LMEPs were recorded following different pulse widths and output currents using six surface laryngeal EMG electrodes to calculate input/output curves and estimate LMEP latency, threshold current for minimal (Ithreshold), half-maximal (I50), and 95% of maximal (I95) response induction and amplitude of maximal response (Vmax). These were compared with the acute + chronic group and between responders and nonresponders in the acute and chronic group. RESULTS: VNS-induced LMEPs were present in all patients. Ithreshold and I95 values ranged from 0.25 to 1.00 mA and from 0.42 to 1.77 mA, respectively. Estimated mean LMEP latencies were 10 ± 0.1 milliseconds. No significant differences between responders and nonresponders were observed. In the acute + chronic group, Ithreshold values remained stable over time. However, at the individual level in this group, Vmax was lower in all patients after one year compared with baseline. CONCLUSIONS: Noninvasive VNS-induced LMEP recording is feasible both at initiation of VNS therapy and after one year. Low output currents (0.25-1.00 mA) may be sufficient to activate vagal Aα-motor fibers. Maximal LMEP amplitudes seemed to decrease after chronic VNS therapy in patients.


Subject(s)
Epilepsy , Vagus Nerve Stimulation , Epilepsy/therapy , Evoked Potentials , Humans , Laryngeal Muscles/innervation , Laryngeal Muscles/physiology , Nerve Fibers , Vagus Nerve/physiology , Vagus Nerve Stimulation/adverse effects
3.
J Thromb Thrombolysis ; 53(1): 58-66, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34173169

ABSTRACT

The optimal thromboprophylactic strategy for patients affected by Coronavirus disease 2019 (COVID-19) has been debated among experts. This study evaluated the safety and efficacy of a thromboprophylaxis algorithm. This was a retrospective, single-center study in critically ill patients admitted to the intensive care unit (University affiliated Hospital) for acute respiratory failure due to Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2). From March 16 to April 9, 2020, thromboprophylaxis was adjusted according to weight (control group, n = 19) and after this date, thromboprophylaxis depended on an algorithm based on thrombotic and hemorrhagic risk factors (protocol group, n = 13). With regard to safety (number of major bleeding events and blood transfusions), the groups were not significantly different. With regard to efficacy, the number of thrombotic events decreased from 37 to 0%, p = 0.025 after implementation of the algorithm. Also, peak fibrinogen dropped from 8.6 (7.2-9.3) to 6.5 (4.6-8.4) g/L, p = 0.041 and D-dimers from 2194 (1464-3763) to 1486 (900-2582) ng/mL, p = 0.0001. In addition, length of stay declined from 19 (10-31) to 5 (3-19) days, p = 0.009. In conclusion, a tailored thromboprophylaxis algorithm (risk stratification based on clinical parameters and biological markers) reduce thrombotic phenomena in critically ill COVID-19 patients without increasing major bleeding.


Subject(s)
Algorithms , Anticoagulants/therapeutic use , COVID-19 , Thrombosis , COVID-19/complications , Critical Illness , Hemorrhage/chemically induced , Humans , Retrospective Studies , Thrombosis/etiology , Thrombosis/prevention & control
4.
Diagnostics (Basel) ; 11(8)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34441246

ABSTRACT

Magnetic resonance imaging (MRI) is frequently used for preclinical treatment monitoring in glioblastoma (GB). Discriminating between tumors and tumor-associated changes is challenging on in vivo MRI. In this study, we compared in vivo MRI scans with ex vivo MRI and histology to estimate more precisely the abnormal mass on in vivo MRI. Epileptic seizures are a common symptom in GB. Therefore, we used a recently developed GB-associated epilepsy model from our group with the aim of further characterizing the model and making it useful for dedicated epilepsy research. Ten days after GB inoculation in rat entorhinal cortices, in vivo MRI (T2w and mean diffusivity (MD)), ex vivo MRI (T2w) and histology were performed, and tumor volumes were determined on the different modalities. The estimated abnormal mass on ex vivo T2w images was significantly smaller compared to in vivo T2w images, but was more comparable to histological tumor volumes, and might be used to estimate end-stage tumor volumes. In vivo MD images displayed tumors as an outer rim of hyperintense signal with a core of hypointense signal, probably reflecting peritumoral edema and tumor mass, respectively, and might be used in the future to distinguish the tumor mass from peritumoral edema-associated with reactive astrocytes and activated microglia, as indicated by an increased expression of immunohistochemical markers-in preclinical models. In conclusion, this study shows that combining imaging techniques using different structural scales can improve our understanding of the pathophysiology in GB.

5.
Front Neurosci ; 15: 682036, 2021.
Article in English | MEDLINE | ID: mdl-34220437

ABSTRACT

AIMS: Intracerebral hemorrhage (ICH) is a known risk factor for the development of acute symptomatic as well as late unprovoked seizures. The underlying pathophysiology of post-ICH seizures is incompletely understood and there are no reliable predictive biomarkers. An animal model to study post-ICH seizures is currently lacking. The aim of this study was to investigate (1) the occurrence of seizures and interictal epileptiform activity in the ICH rat collagenase model using long-term video-EEG monitoring (VEM) and (2) whether seizure occurrence was associated with interictal epileptiform activity and histological features. METHODS: Male Sprague-Dawley rats were implanted with epidural electrodes. After 1 week of baseline VEM, collagenase was injected in left striatum to induce an ICH. VEM was continued for 180 days to assess the occurrence of post-ICH seizures and interictal epileptiform activity (spikes and epileptiform discharges). At the end of the experiment, animals were euthanized for histological characterization of the hemorrhagic lesion, using cresyl violet, Prussian blue and immunofluorescence staining. RESULTS: Acute symptomatic seizures occurred in 4/12 animals between 46 and 80 h after ICH induction. Late unprovoked seizures were present in 2/12 animals and started at 90 and 103 days post-ICH. Animals with late unprovoked seizures did not have acute symptomatic seizures. All electrographic seizures were accompanied by clear behavioral changes. Interictal spikes and epileptiform discharges were observed in all animals but occurred more frequently in rats with late seizures (p = 0.019 and p < 0.001, respectively). Animals with acute symptomatic seizures had more extended hemorrhagic lesions and hemosiderin deposits in the piriform cortex. CONCLUSION: Both acute symptomatic and late unprovoked seizures were observed in the rat collagenase model. Interictal epileptiform activity was more frequently seen in animals with late seizures. Rats with acute symptomatic seizures showed more extensive lesions and hemosiderin deposits in the piriform cortex. This model could be used to further explore possible biomarkers for epileptogenesis.

6.
Eur J Med Chem ; 208: 112753, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32883641

ABSTRACT

Coagulation factor XII (FXII), a S1A serine protease, was discovered more than fifty years ago. However, its in vivo functions and its three-dimensional structure started to be disclosed in the last decade. FXII was found at the crosstalk of several physiological pathways including the intrinsic coagulation pathway, the kallikrein-kinin system, and the immune response. The FXII inhibition emerges as a therapeutic strategy for the safe prevention of artificial surface-induced thrombosis and in patients suffering from hereditary angioedema. The anti-FXII antibody garadacimab discovered by phage-display library technology is actually under phase II clinical evaluation for the prophylactic treatment of hereditary angioedema. The implication of FXII in neuro-inflammatory and neurodegenerative disorders is also an emerging research field. The FXII or FXIIa inhibitors currently under development include peptides, proteins, antibodies, RNA-based technologies, and, to a lesser extent, small-molecular weight inhibitors. Most of them are proteins, mainly isolated from hematophagous arthropods and plants. The discovery and development of these FXII inhibitors and their potential indications are discussed in the review.


Subject(s)
Anticoagulants/pharmacology , Factor XII/antagonists & inhibitors , Factor XIIa/antagonists & inhibitors , Serine Proteinase Inhibitors/pharmacology , Animals , Anticoagulants/chemistry , Drug Discovery , Factor XII/chemistry , Factor XIIa/chemistry , Humans , Serine Proteinase Inhibitors/chemistry
7.
Int J Mol Sci ; 21(19)2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32977526

ABSTRACT

Seizures are common in patients with high-grade gliomas (30-60%) and approximately 15-30% of glioblastoma (GB) patients develop drug-resistant epilepsy. Reliable animal models are needed to develop adequate treatments for glioma-related epilepsy. Therefore, fifteen rats were inoculated with F98 GB cells (GB group) and four rats with vehicle only (control group) in the right entorhinal cortex. MRI was performed to visualize tumor presence. A subset of seven GB and two control rats were implanted with recording electrodes to determine the occurrence of epileptic seizures with video-EEG recording over multiple days. In a subset of rats, tumor size and expression of tumor markers were investigated with histology or mRNA in situ hybridization. Tumors were visible on MRI six days post-inoculation. Time-dependent changes in tumor morphology and size were visible on MRI. Epileptic seizures were detected in all GB rats monitored with video-EEG. Twenty-one days after inoculation, rats were euthanized based on signs of discomfort and pain. This study describes, for the first time, reproducible tumor growth and spontaneous seizures upon inoculation of F98 cells in the rat entorhinal cortex. The development of this new model of GB-related epilepsy may be valuable to design new therapies against tumor growth and associated epileptic seizures.


Subject(s)
Brain Neoplasms , Electroencephalography , Epilepsy , Glioma , Neoplasms, Experimental , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/physiopathology , Cell Line, Tumor , Epilepsy/metabolism , Epilepsy/pathology , Epilepsy/physiopathology , Glioma/metabolism , Glioma/pathology , Glioma/physiopathology , Male , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Neoplasms, Experimental/physiopathology , Rats , Rats, Inbred F344
8.
Epilepsy Res ; 164: 106364, 2020 08.
Article in English | MEDLINE | ID: mdl-32497986

ABSTRACT

BACKGROUND AND PURPOSE: Intracerebral hemorrhage (ICH) is a known risk factor for the development of seizures, but little is known about the pathophysiology of seizures in the acute phase post-ICH and their influence on functional outcome. With the use of an animal model, the underlying pathophysiology could be further unraveled. The aim of our study was to optimize the rat collagenase stroke model for the detection of acute symptomatic seizures using video-EEG monitoring. METHODS: Male Sprague-Dawley rats were implanted with scalp electrodes and a craniotomy was made for later injection of collagenase. After one week of baseline video-EEG recording, rats were injected with 0.6 U collagenase in 0.7 µL saline in left striatum, in close proximity of the piriform cortex, and immediately reconnected to the video-EEG setup for 7 days. Occurrence of clinical and electrographic seizures was assessed and functional deficits were evaluated on several time points using the cylinder test, Neurological Deficit Scale (NDS) and forelimb placing test. At day 7 post-ICH, animals were euthanized. The volume and cortical involvement of the hemorrhage were assessed by histological examination of the brain tissue, using Cresyl violet stain. RESULTS: Collagenase injection induced ICH in all animals with a mean volume of 27 mm³ (SEM 7 mm³, range 4-92 mm³). Functional deficits were present in all animals injected with collagenase (pre-ICH vs post-ICH, p < 0.001). Epileptic seizures occurred in 5/11 animals and started between 1 and 61 h after ICH induction. Behavioral changes were observed in 13/15 seizures. CONCLUSIONS: Injecting rats with 0.6 U of collagenase is a useful model to study the occurrence of acute symptomatic seizures post-ICH as it results in ICH in all animals without mortality, 45% incidence of ICH-induced acute symptomatic seizures and measurable functional deficits.


Subject(s)
Brain/drug effects , Cerebral Hemorrhage/chemically induced , Collagenases/pharmacology , Seizures/chemically induced , Animals , Brain/metabolism , Brain/physiopathology , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/physiopathology , Disease Models, Animal , Electroencephalography/methods , Male , Rats, Sprague-Dawley , Seizures/complications , Stroke/chemically induced , Stroke/complications , Stroke/metabolism
9.
Brain Stimul ; 13(5): 1198-1206, 2020.
Article in English | MEDLINE | ID: mdl-32454214

ABSTRACT

BACKGROUND: Recent experiments in rats have demonstrated significant effects of VNS on hippocampal excitability but were partially attributed to hypothermia, induced by the applied VNS parameters. OBJECTIVE: To allow meaningful preclinical research on the mechanisms of VNS and translation of rodent results to clinical VNS trials, we aimed to identify non-hypothermia inducing VNS parameters that significantly affect hippocampal excitability. METHODS: VNS was administered in cycles of 30 s including either 0.1, 0.16, 0.25, 0.5, 1.5, 3 or 7 s of VNS ON time (biphasic pulses, 250µs/phase, 1 mA, 30 Hz) and the effect of different VNS ON times on brain temperature was evaluated. VNS paradigms with and without hypothermia were compared for their effects on hippocampal neurophysiology in freely moving rats. RESULTS: Using VNS parameters with an ON time/OFF time of up to 0.5 s/30 s did not cause hypothermia, while clear hypothermia was detected with ON times of 1.5, 3 and 7 s/30 s. Relative to SHAM VNS, the normothermic 0.5 s VNS condition significantly decreased hippocampal EEG power and changed dentate gyrus evoked potentials with an increased field excitatory postsynaptic potential slope and a decreased population spike amplitude. CONCLUSION: VNS can be administered in freely moving rats without causing hypothermia, while profoundly affecting hippocampal neurophysiology suggestive of reduced excitability of hippocampal neurons despite increased synaptic transmission efficiency.


Subject(s)
Body Temperature/physiology , Electrophysiological Phenomena/physiology , Hippocampus/physiology , Vagus Nerve Stimulation/methods , Animals , Excitatory Postsynaptic Potentials/physiology , Male , Neurons/physiology , Rats , Rats, Sprague-Dawley , Synaptic Transmission/physiology , Temperature
10.
Nucl Med Biol ; 82-83: 9-16, 2020.
Article in English | MEDLINE | ID: mdl-31841816

ABSTRACT

INTRODUCTION: Considering the need for rapid change of treatment in recurrent glioblastoma (GB), it is of utmost importance to characterize PET radiopharmaceuticals that allow early discrimination of tumor from therapy-related effects. In this study, we examined the value of 2-[18F]FELP as a LAT1 tumor-specific PET tracer in comparison with [18F]FDG and [18F]FET in a combined orthotopic rat radiation necrosis and glioblastoma model. A second experiment compared 2-[18F]FELP to [18F]FDG in a mouse glioblastoma - inflammation model. METHODS: Using the small animal radiation research platform (SARRP), radiation necrosis (RN) was induced in the left frontal lobe of the rat brain. When radiation-induced changes were visible on MRI, F98 rat glioblastoma cells were stereotactically inoculated in the contralateral right frontal lobe. When tumor growth was confirmed on MRI, 2-[18F]FELP, [18F]FET and [18F]FDG PET scans were acquired on three consecutive days. In an inflammation experiment, mice were inoculated in the left thigh with U87 human glioblastoma cells. After heterotopic tumor growth was confirmed macroscopically, inflammation was induced by injection of turpentine subcutaneously in the right thigh. Subsequently, 2-[18F]FELP and [18F]FDG scans were acquired on two consecutive days. RESULTS: The in vivo PET images demonstrated that 2-[18F]FELP could differentiate glioblastoma and radiation necrosis using SUVmean (p = 0.0016) and LNRmean (p = 0.009), while [18F]FET was only able to differentiate both lesions by means of the SUVmean. (p = 0.047) Delayed [18F]FDGlate PET (4 h postinjection) was also able to distinguish glioblastoma from radiation necrosis, but smaller lesion-to-normal brain ratios were observed (SUVmean: p = 0.009; LNRmean: p = 0.028). In the inflammation study, 2-[18F]FELP showed no significant uptake in the inflammation lesion when compared to the control group (SUVmean: p = 0.149; LNRmean: p = 0.083). In contrast, both conventional and delayed [18F]FDG displayed significant uptake in the turpentine-invoked lesion (SUVmean: p = 0.021; LNRmean: p = 0.021). CONCLUSION: This study suggests that the 2-[18F]FELP PET is able to differentiate glioblastoma from radiation necrosis and that the 2-[18F]FELP uptake is less likely to be contaminated by the presence of inflammation than the [18F]FDG signal. ADVANCES IN KNOWLEDGE: These results are clinically relevant for the differential diagnosis between tumor and radiation necrosis because radiation necrosis always contains a certain amount of inflammatory cells. Hence, 2-[18F]FELP is preferred to discriminate tumor from radiation necrosis.


Subject(s)
Glioblastoma/diagnostic imaging , Large Neutral Amino Acid-Transporter 1/metabolism , Phenylalanine/analogs & derivatives , Positron-Emission Tomography/methods , Radiation Injuries/diagnostic imaging , Animals , Cell Line, Tumor , Diagnosis, Differential , Humans , Inflammation/diagnostic imaging , Mice , Necrosis/diagnostic imaging , Radioactive Tracers
11.
Front Neurosci ; 13: 880, 2019.
Article in English | MEDLINE | ID: mdl-31507360

ABSTRACT

Vagus nerve stimulation (VNS) therapy is associated with laryngeal muscle activation and induces voice modifications, well-known side effects of the therapy resulting from co-activation of the recurrent laryngeal nerve. In this study, we describe the non-invasive transcutaneous recording of laryngeal motor evoked potentials (LMEPs), which could serve as a biomarker of effective nerve activation and individual titration in patients with drug-resistant epilepsy. We recruited drug-resistant epileptic patients treated for at least 6 months with a VNS. Trains of 600-1200 VNS pulses were delivered with increasing current outputs. We placed six skin electrodes on the ventral surface of the neck, in order to record LMEPs whenever the laryngeal muscular threshold was reached. We studied the internal consistency and the variability of LMEP recordings, and compared different methods for amplitude calculation. Recruitment curves were built based on the stimulus-response relationship. We also determined the electrical axis of the LMEPs dipole in order to define the optimal electrode placement for LMEPs recording in a clinical setting. LMEPs were successfully recorded in 11/11 patients. The LMEPs threshold ranged from 0.25 to 1 mA (median 0.50 mA), and onset latency was between 5.37 and 8.77 ms. The signal-to-noise ratio was outstanding in 10/11 patients. In these cases, excellent reliability (Intraclass correlation coefficient, ICC > 0.90 across three different amplitude measurements) was achieved with 10 sample averages. Moreover, our recordings showed very good internal consistency (Cronbach's alpha > 0.95 for 10 epochs). Area-under-the-curve and peak-to-peak measurement proved to be complementary methods for amplitude calculation. Finally, we determined that an optimal derivation requires only two recording electrodes, aligned on a horizontal axis around the laryngeal prominence. In conclusion, we describe here an optimal methodology for the recording of VNS-induced motor evoked responses from the larynx. Although further clinical validation is still necessary, LMEPs might be useful as a non-invasive marker of effective nerve activation, and as an aid for the clinician to perform a more rational titration of VNS parameters.

12.
Int J Neural Syst ; 29(9): 1950008, 2019 Nov.
Article in English | MEDLINE | ID: mdl-30961408

ABSTRACT

AIM. Vagus nerve stimulation (VNS) modulates hippocampal dentate gyrus (DG) electrophysiology and induces hypothermia in freely moving rats. This study evaluated whether hippocampal (CA1) electrophysiology is similarly modulated and to what extent this is associated with VNS-induced hypothermia. METHODS. Six freely moving rats received a first 4h session of rapid cycling VNS (7s on/18s off), while CA1 evoked potentials, EEG and core temperature were recorded. In a second 4h session, external heating was applied during the 3rd and 4thh of VNS counteracting VNS-induced hypothermia. RESULTS. VNS decreased the slope of the field excitatory postsynaptic potential (fEPSP), increased the population spike (PS) amplitude and latency, decreased theta (4-12Hz) and gamma (30-100Hz) band power and theta peak frequency. Normalizing body temperature during VNS through external heating abolished the effects completely for fEPSP slope, PS latency and gamma band power, partially for theta band power and theta peak frequency and inverted the effect on PS amplitude. CONCLUSIONS. Rapid cycle VNS modulates CA1 electrophysiology similarly to DG, suggesting a wide-spread VNS-induced effect on hippocampal electrophysiology. Normalizing core temperature elucidated that VNS-induced hypothermia directly influences several electrophysiological parameters but also masks a VNS-induced reduction in neuronal excitability.


Subject(s)
CA1 Region, Hippocampal/physiology , Evoked Potentials/physiology , Hypothermia/physiopathology , Vagus Nerve Stimulation/methods , Animals , Electric Stimulation , Electroencephalography , Heating , Male , Rats
13.
J Med Chem ; 61(12): 5279-5291, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29775064

ABSTRACT

The present study describes the identification of highly potent dimeric 1,2,4-benzothiadiazine 1,1-dioxide (BTD)-type positive allosteric modulators of the AMPA receptors (AMPApams) obtained by linking two monomeric BTD scaffolds through their respective 6-positions. Using previous X-ray data from monomeric BTDs cocrystallized with the GluA2 ligand-binding domain (LBD), a molecular modeling approach was performed to predict the preferred dimeric combinations. Two 6,6-ethylene-linked dimeric BTD compounds (16 and 22) were prepared and evaluated as AMPApams on HEK293 cells expressing GluA2o( Q) (calcium flux experiment). These compounds were found to be about 10,000 times more potent than their respective monomers, the most active dimeric compound being the bis-4-cyclopropyl-substituted compound 22 [6,6'-(ethane-1,2-diyl)bis(4-cyclopropyl-3,4-dihydro-2 H-1,2,4-benzothiadiazine 1,1-dioxide], with an EC50 value of 1.4 nM. As a proof of concept, the bis-4-methyl-substituted dimeric compound 16 (EC50 = 13 nM) was successfully cocrystallized with the GluA2o-LBD and was found to occupy the two BTD binding sites at the LBD dimer interface.


Subject(s)
Allosteric Regulation/drug effects , Receptors, AMPA/chemistry , Receptors, AMPA/metabolism , Benzothiadiazines/chemistry , Binding Sites , Chemistry Techniques, Synthetic , Crystallography, X-Ray , Dimerization , Drug Design , Drug Evaluation, Preclinical/methods , HEK293 Cells , Humans , Molecular Docking Simulation , Protein Domains
14.
Thromb Res ; 157: 126-133, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28738274

ABSTRACT

Over the last decade, the coagulation factor XIIa (FXIIa) has seen renewed interest as a therapeutic target. Indeed, its inhibition could offer a protection against thrombosis without increasing the risk of bleeding. Moreover, it could answer the need for a safe prevention of blood-contacting medical devices-related thrombosis. Among the FXII and FXIIa inhibitors already described in literature, organic small-molecular-weight inhibitors are rather left behind. In this study, we were focused on the discovery and assessment of water soluble small molecules. First, a search within our library of compounds flagged two promising hits. Indeed, enzymes and plasma assays suggested they have a greater activity on the contact factors (FXIa, plasma kallikrein and FXIIa) than on the TF pathway. Then, simple pharmacomodulations were undertaken with the aim to design more selective FXIIa inhibitors. This afforded compounds having different degrees of selectivity. All compounds were finally screened in whole blood using an 8-channel microfluidic model and thromboelastometry measurements. Interestingly, all molecules interfered with the thrombus formation and one of them could be considered as a small organic contact inhibitor.


Subject(s)
Blood Coagulation/drug effects , Coumarins/therapeutic use , Coumarins/pharmacology , Humans
15.
Eur J Med Chem ; 110: 181-94, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26827162

ABSTRACT

Inhibitors of the coagulation factor XIIa (FXIIa) are attractive to detail the roles of this protease in hemostasis and thrombosis, to suppress artifact due to contact pathway activation in blood coagulation assays, and they are promising as antithrombotic therapy. The 3-carboxamide coumarins have been previously described as small-molecular-weight FXIIa inhibitors. In this study, we report a structure-activity relationship (SAR) study around this scaffold with the aim to discover new selective FXIIa inhibitors with an improved physico-chemical profile. To better understand these SAR, docking experiments were undertaken. For this purpose, we built an original hybrid model of FXIIa. This model has the advantage to gather the best features from the recently published crystal structure of FXIIa in its zymogen form and a more classical homology model. Results with the hybrid model are encouraging as they help understanding the activity and selectivity of our best compounds.


Subject(s)
Coumarins/chemistry , Coumarins/pharmacology , Factor XIIa/antagonists & inhibitors , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/pharmacology , Amides/chemical synthesis , Amides/chemistry , Amides/pharmacology , Coumarins/chemical synthesis , Factor XIIa/metabolism , Fibrinolytic Agents/chemical synthesis , Humans , Molecular Docking Simulation , Structure-Activity Relationship
16.
J Psychiatr Res ; 68: 1-7, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26228393

ABSTRACT

It has been shown that vagus nerve stimulation (VNS) has an antidepressant-like effect in the forced swim test. The mechanism of action underlying this effect is incompletely understood, but there is evidence suggesting that the locus coeruleus (LC) may play an important role. In this study, noradrenergic LC neurons were selectively lesioned to test their involvement in the antidepressant-like effect of VNS in the forced swim test. Forced swim test behavior was assessed in rats that were subjected to VNS or sham treatment. In half of the VNS-treated animals, the noradrenergic neurons from the LC were lesioned using the selective neurotoxin DSP-4 [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride], yielding three experimental arms: sham, VNS and DSP-4-VNS (n = 8 per group). Furthermore, the open field test was performed to evaluate locomotor activity. A dopamine-ß-hydroxylase immunostaining was performed to confirm lesioning of noradrenergic LC neurons. VNS significantly reduced the percentage of immobility time in the forced swim test compared to sham treatment (median: 56%, interquartile range: 41% vs. median: 75%, interquartile range: 12%). This antidepressant-like effect of VNS could not be demonstrated in the DSP-4-VNS group (median: 79%, interquartile range: 33%). Locomotor activity in the open field test was not different between the three treatment arms. The absence of hippocampal dopamine-ß-hydroxylase immunostaining in the DSP-4-treated rats confirmed the lesioning of noradrenergic neurons originating from the brainstem LC. The results of this study demonstrate that the noradrenergic neurons from the LC play an important role in the antidepressant-like effect of VNS.


Subject(s)
Benzylamines/therapeutic use , Depression/therapy , Neurotransmitter Uptake Inhibitors/therapeutic use , Vagus Nerve Stimulation/methods , Animals , Disease Models, Animal , Dopamine beta-Hydroxylase/metabolism , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Hippocampus/drug effects , Hippocampus/metabolism , Male , Rats , Rats, Inbred WKY , Statistics, Nonparametric , Swimming/psychology , Treatment Outcome , Tyrosine 3-Monooxygenase/metabolism
17.
Biol Open ; 4(7): 929-36, 2015 Jun 19.
Article in English | MEDLINE | ID: mdl-26092868

ABSTRACT

Cystic fibrosis (CF) is a fatal genetic disease associated with widespread exocrine gland dysfunction. Studies have suggested activating effects of resveratrol, a naturally-occurring polyphenol compound with antioxidant and anti-inflammatory properties, on CF transmembrane conductance regulator (CFTR) protein function. We assayed, in F508del-CFTR homozygous (CF) and in wild-type mice, the effect of resveratrol on salivary secretion in basal conditions, in response to inhibition by atropine (basal ß-adrenergic-dependent component) and to stimulation by isoprenaline (CFTR-dependent component). Both components of the salivary secretion were smaller in CF mice than in controls. Two hours after intraperitoneal administration of resveratrol (50 mg/kg) dissolved in DMSO, the compound was detected in salivary glands. As in both CF and in wild-type mice, DMSO alone increased the response to isoprenaline in males but not in females, the effect of resveratrol was only measured in females. In wild-type mice, isoprenaline increased secretion by more than half. In CF mice, resveratrol rescued the response to isoprenaline, eliciting a 2.5-fold increase of ß-adrenergic-stimulated secretion. We conclude that the salivary secretion assay is suitable to test DMSO-soluble CFTR modulators in female mice. We show that resveratrol applied in vivo to mice reaches salivary glands and increases ß-adrenergic secretion. Immunolabelling of CFTR in human bronchial epithelial cells suggests that the effect is associated with increased CFTR protein expression. Our data support the view that resveratrol is beneficial for treating CF. The salivary secretion assay has a potential application to test efficacy of novel CF therapies.

18.
Talanta ; 116: 719-25, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24148466

ABSTRACT

Developing an EMMA method for enzymatic assay remains a challenge, particularly using UV detection. Indeed, it is necessary to optimize the separation conditions while allowing the enzymatic reaction to occur within the capillary respecting kinetic constraints and achieving enough sensitivity. In this work, such EMMA methodology was set up to evaluate the inhibitory potency of drugs toward thrombin, a serine protease implicated in the coagulation cascade. To achieve our goal, the separation buffer, the injection sequence, the internal standard and the chromogenic substrate were investigated. The newly developed system was then assessed determining the kinetic Km constant for the selected substrate and compared with the results obtained with a continuous spectrophotometer cell assay. Secondly, the Ki inhibitory constant of the thrombin inhibitor argatroban was determined and found in agreement with the published value.


Subject(s)
Antithrombins/chemistry , Pipecolic Acids/chemistry , Thrombin/chemistry , Arginine/analogs & derivatives , Blood Coagulation , Chromatography, Micellar Electrokinetic Capillary , Chromogenic Compounds/analysis , Dipeptides/analysis , Electrophoresis, Capillary , Enzyme Assays , Humans , Kinetics , Solutions , Sulfonamides , Thrombin/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...