Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34358098

ABSTRACT

Site-specific antibody conjugations generate homogeneous antibody-drug conjugates with high therapeutic index. However, there are limited examples for producing the site-specific conjugates with a drug-to-antibody ratio (DAR) greater than two, especially using engineered cysteines. Based on available Fc structures, we designed and introduced free cysteine residues into various antibody CH2 and CH3 regions to explore and expand this technology. The mutants were generated using site-directed mutagenesis with good yield and properties. Conjugation efficiency and selectivity were screened using PEGylation. The top single cysteine mutants were then selected and combined as double cysteine mutants for expression and further investigation. Thirty-six out of thirty-eight double cysteine mutants display comparable expression with low aggregation similar to the wild-type antibody. PEGylation screening identified seventeen double cysteine mutants with good conjugatability and high selectivity. PEGylation was demonstrated to be a valuable and efficient approach for quickly screening mutants for high selectivity as well as conjugation efficiency. Our work demonstrated the feasibility of generating antibody conjugates with a DAR greater than 3.4 and high site-selectivity using THIOMABTM method. The top single or double cysteine mutants identified can potentially be applied to site-specific antibody conjugation of cytotoxin or other therapeutic agents as a next generation conjugation strategy.

2.
MAbs ; 13(1): 1904546, 2021.
Article in English | MEDLINE | ID: mdl-33899674

ABSTRACT

Hybridoma technology has been valuable in the development of therapeutic antibodies. More recently, antigen-specific B-cell selection and display technologies are also gaining importance. A major limitation of these approaches used for antibody discovery is the extensive process of cloning and expression involved in transitioning from antibody identification to validating the function, which compromises the throughput of antibody discovery. In this study, we describe a process to identify and rapidly re-format and express antibodies for functional characterization. We used two different approaches to isolate antibodies to five different targets: 1) flow cytometry to identify antigen-specific single B cells from the spleen of immunized human immunoglobulin transgenic mice; and 2) panning of phage libraries. PCR amplification allowed recovery of paired VH and VL sequences from 79% to 96% of antigen-specific B cells. All cognate VH and VL transcripts were formatted into transcription and translation compatible linear DNA expression cassettes (LEC) encoding whole IgG or Fab. Between 92% and 100% of paired VH and VL transcripts could be converted to LECs, and nearly 100% of them expressed as antibodies when transfected into Expi293F cells. The concentration of IgG in the cell culture supernatants ranged from 0.05 µg/ml to 145.8 µg/ml (mean = 18.4 µg/ml). Antigen-specific binding was displayed by 78-100% of antibodies. High throughput functional screening allowed the rapid identification of several functional antibodies. In summary, we describe a plasmid-free system for cloning and expressing antibodies isolated by different approaches, in any format of choice for deep functional screening that can be applied in any research setting during antibody discovery.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Cell Separation , Cell Surface Display Techniques , Flow Cytometry , Immunoglobulin Fab Fragments/biosynthesis , Immunoglobulin G/biosynthesis , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibody Specificity , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Line , High-Throughput Screening Assays , Humans , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/immunology , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Mice, Transgenic , Peptide Library , Spleen/immunology , Spleen/metabolism , Workflow
3.
MAbs ; 12(1): 1814583, 2020.
Article in English | MEDLINE | ID: mdl-32892677

ABSTRACT

Antibodies mediate effector functions through Fcγ receptor (FcγR) interactions and complement activation, causing cytokine release, degranulation, phagocytosis, and cell death. They are often undesired for development of therapeutic antibodies where only antigen binding or neutralization would be ideal. Effector elimination has been successful with extensive mutagenesis, but these approaches can potentially lead to manufacturability and immunogenicity issues. By switching the native glycosylation site from position 297 to 298, we created alternative antibody glycosylation variants in the receptor interaction interface as a novel strategy to eliminate the effector functions. The engineered glycosylation site at Asn298 was confirmed by SDS-PAGE, mass spectrometry, and X-ray crystallography (PDB code 6X3I). The lead NNAS mutant (S298N/T299A/Y300S) shows no detectable binding to mouse or human FcγRs by surface plasmon resonance analyses. The effector functions of the mutant are completely eliminated when measured in antibody-dependent cell-meditated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) assays. In vivo, the NNAS mutant made on an antibody against a human lymphocyte antigen does not deplete T cells or B cells in transgenic mice, in contrast to wild-type antibody. Structural study confirms the successful glycosylation switch to the engineered Asn298 site. The engineered glycosylation would clash with approaching FcγRs based on reported Fc-FcγR co-crystal structures. In addition, the NNAS mutants of multiple antibodies retain binding to antigens and neonatal Fc receptor, exhibit comparable purification yields and thermal stability, and display normal circulation half-life in mice and non-human primate. Our work provides a novel approach for generating therapeutic antibodies devoid of any ADCC and CDC activities with potentially lower immunogenicity.


Subject(s)
Amino Acid Substitution , Complement Activation , Cytotoxicity, Immunologic , Histocompatibility Antigens Class I/immunology , Immunoglobulin Fc Fragments , Mutation, Missense , Receptors, Fc/immunology , Animals , CHO Cells , Cricetulus , Glycosylation , HEK293 Cells , Histocompatibility Antigens Class I/genetics , Humans , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/immunology , Receptors, Fc/genetics
4.
J Virol ; 94(6)2020 02 28.
Article in English | MEDLINE | ID: mdl-31826999

ABSTRACT

The discovery of potent and broadly protective influenza virus epitopes could lead to improved vaccines that are resistant to antigenic drift. Here, we describe human antibody C585, isolated from a vaccinee with remarkable serological breadth as measured by hemagglutinin inhibition (HAI). C585 binds and neutralizes multiple H3N2 strains isolated between 1968 and 2016, including strains that emerged up to 4 years after B cells were isolated from the vaccinated donor. The crystal structure of C585 Fab in complex with the HA from A/Switzerland/9715293/2013 (H3N2) shows that the antibody binds to a novel and well-conserved epitope on the globular head of H3 HA and that it differs from other antibodies not only in its epitope but in its binding geometry and hypermutated framework 3 region, thereby explaining its breadth and ability to mediate hemagglutination inhibition across decades of H3N2 strains. The existence of epitopes such as the one elucidated by C585 has implications for rational vaccine design.IMPORTANCE Influenza viruses escape immunity through continuous antigenic changes that occur predominantly on the viral hemagglutinin (HA). Induction of broadly neutralizing antibodies (bnAbs) targeting conserved epitopes following vaccination is a goal of universal influenza vaccines and advantageous in protecting hosts against virus evolution and antigenic drift. To date, most of the discovered bnAbs bind either to conserved sites in the stem region or to the sialic acid-binding pocket. Generally, antibodies targeting the stem region offer broader breadth with low potency, while antibodies targeting the sialic acid-binding pocket cover narrower breadth but usually have higher potency. In this study, we identified a novel neutralizing epitope in the head region recognized by a broadly neutralizing human antibody against a broad range of H3N2 with high potency. This epitope may provide insights for future universal vaccine design.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Hemagglutinins/immunology , Influenza Vaccines/immunology , Drug Design , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Glycosylation , Hemagglutination Inhibition Tests , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinins/chemistry , Hemagglutinins/genetics , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Male , Middle Aged , Models, Molecular , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Protein Conformation , Sequence Alignment , Sequence Analysis , Vaccination
5.
MAbs ; 11(7): 1276-1288, 2019 10.
Article in English | MEDLINE | ID: mdl-31216930

ABSTRACT

The neonatal Fc receptor (FcRn) promotes antibody recycling through rescue from normal lysosomal degradation. The binding interaction is pH-dependent with high affinity at low pH, but not under physiological pH conditions. Here, we combined rational design and saturation mutagenesis to generate novel antibody variants with prolonged half-life and acceptable development profiles. First, a panel of saturation point mutations was created at 11 key FcRn-interacting sites on the Fc region of an antibody. Multiple variants with slower FcRn dissociation kinetics than the wildtype (WT) antibody at pH 6.0 were successfully identified. The mutations were further combined and characterized for pH-dependent FcRn binding properties, thermal stability and the FcγRIIIa and rheumatoid factor binding. The most promising variants, YD (M252Y/T256D), DQ (T256D/T307Q) and DW (T256D/T307W), exhibited significantly improved binding to FcRn at pH 6.0 and retained similar binding properties as WT at pH 7.4. The pharmacokinetics in human FcRn transgenic mice and cynomolgus monkeys demonstrated that these properties translated to significantly prolonged plasma elimination half-life compared to the WT control. The novel variants exhibited thermal stability and binding to FcγRIIIa in the range comparable to clinically validated YTE and LS variants, and showed no enhanced binding to rheumatoid factor compared to the WT control. These engineered Fc mutants are promising new variants that are widely applicable to therapeutic antibodies, to extend their circulation half-life with obvious benefits of increased efficacy, and reduced dose and administration frequency.


Subject(s)
Bioengineering/methods , Histocompatibility Antigens Class I/chemistry , Receptors, Fc/chemistry , Receptors, IgG/chemistry , Animals , Blood Circulation , Half-Life , Histocompatibility Antigens Class I/genetics , Humans , Hydrogen-Ion Concentration , Macaca fascicularis , Mice , Mice, Transgenic , Mutagenesis, Site-Directed , Protein Binding , Protein Conformation , Protein Stability , Proteolysis , Receptors, Fc/genetics , Rheumatoid Factor
6.
MAbs ; 11(7): 1266-1275, 2019 10.
Article in English | MEDLINE | ID: mdl-31199181

ABSTRACT

Deamidation evaluation and mitigation is an important aspect of therapeutic antibody developability assessment. We investigated the structure and function of the Asn-Gly deamidation in a human anti-CD52 IgG1 antibody light chain complementarity-determining region 1, and risk mitigation through protein engineering. Antigen binding affinity was found to decrease about 400-fold when Asn33 was replaced with an Asp residue to mimic the deamidation product, suggesting significant impacts on antibody function. Other variants made at Asn33 (N33H, N33Q, N33H, N33R) were also found to result in significant loss of antigen binding affinity. The co-crystal structure of the antigen-binding fragment bound to a CD52 peptide mimetic was solved at 2.2Å (PDB code 6OBD), which revealed that Asn33 directly interacts with the CD52 phosphate group via a hydrogen bond. Gly34, but sits away from the binding interface, rendering it more amendable to mutagenesis without affecting affinity. Saturation mutants at Gly34 were prepared and subjected to forced deamidation by incubation at elevated pH and temperature. Three mutants (G34R, G34K and G34Q) showed increased resistance to deamidation by LC-MS peptide mapping, while maintaining high binding affinity to CD52 antigen measured by Biacore. A complement -dependent cytotoxicity assay indicated that these mutants function by triggering antibody effector function. This study illustrates the importance of structure-based design and extensive mutagenesis to mitigate antibody developability issues.


Subject(s)
Antibodies, Monoclonal/chemistry , CD52 Antigen/chemistry , Complementarity Determining Regions/chemistry , Immunoglobulin G/chemistry , Immunoglobulin Light Chains/chemistry , Amides/chemistry , Antibodies, Monoclonal/genetics , Antibody-Dependent Cell Cytotoxicity , Asparagine/genetics , Bioengineering , CD52 Antigen/genetics , CD52 Antigen/immunology , Complementarity Determining Regions/genetics , Crystallography, X-Ray , Humans , Immunoglobulin G/genetics , Immunoglobulin Light Chains/genetics , Mutagenesis, Site-Directed , Peptide Mapping , Protein Binding , Protein Conformation , Structure-Activity Relationship
7.
Protein Sci ; 24(9): 1401-11, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26044846

ABSTRACT

Recombinant human α-galactosidase A (rhαGal) is a homodimeric glycoprotein deficient in Fabry disease, a lysosomal storage disorder. In this study, each cysteine residue in rhαGal was replaced with serine to understand the role each cysteine plays in the enzyme structure, function, and stability. Conditioned media from transfected HEK293 cells were assayed for rhαGal expression and enzymatic activity. Activity was only detected in the wild type control and in mutants substituting the free cysteine residues (C90S, C174S, and the C90S/C174S). Cysteine-to-serine substitutions at the other sites lead to the loss of expression and/or activity, consistent with their involvement in the disulfide bonds found in the crystal structure. Purification and further characterization confirmed that the C90S, C174S, and the C90S/C174S mutants are enzymatically active, structurally intact and thermodynamically stable as measured by circular dichroism and thermal denaturation. The purified inactive C142S mutant appeared to have lost part of its alpha-helix secondary structure and had a lower apparent melting temperature. Saturation mutagenesis study on Cys90 and Cys174 resulted in partial loss of activity for Cys174 mutants but multiple mutants at Cys90 with up to 87% higher enzymatic activity (C90T) compared to wild type, suggesting that the two free cysteines play differential roles and that the activity of the enzyme can be modulated by side chain interactions of the free Cys residues. These results enhanced our understanding of rhαGal structure and function, particularly the critical roles that cysteines play in structure, stability, and enzymatic activity.


Subject(s)
Cysteine/chemistry , alpha-Galactosidase/chemistry , alpha-Galactosidase/genetics , Disulfides/chemistry , HEK293 Cells , Humans , Mutagenesis, Site-Directed/methods , Protein Folding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Serine/chemistry , Structure-Activity Relationship , alpha-Galactosidase/metabolism
8.
Bioconjug Chem ; 24(3): 408-18, 2013 Mar 20.
Article in English | MEDLINE | ID: mdl-23350694

ABSTRACT

Recombinant human thyroid stimulating hormone (rhTSH or Thyrogen) has been approved for thyroid cancer diagnostics and treatment under a multidose regimen due to its short circulating half-life. To reduce dosing frequency, PEGylation strategies were explored to increase the duration of action of rhTSH. Lysine and N-terminal PEGylation resulted in heterogeneous product profiles with 40% or lower reaction yields of monoPEGylated products. Eleven cysteine mutants were designed based on a structure model of the TSH-TSH receptor (TSHR) complex to create unique conjugation sites on both α and ß subunits for site-specific conjugation. Sequential screening of mutant expression level, oligomerization tendency, and conjugation efficiency resulted in the identification of the αG22C rhTSH mutant for stable expression and scale-up PEGylation. The introduced cysteine in the αG22C rhTSH mutant was partially blocked when isolated from conditioned media and could only be effectively PEGylated after mild reduction with cysteine. This produced a higher reaction yield, ~85%, for the monoPEGylated product. Although the mutation had no effect on receptor binding, PEGylation of αG22C rhTSH led to a PEG size-dependent decrease in receptor binding. Nevertheless, the 40 kDa PEG αG22C rhTSH showed a prolonged duration of action compared to rhTSH in a rat pharmacodynamics model. Reverse-phase HPLC and N-terminal sequencing experiments confirmed site-specific modification at the engineered Cys 22 position on the α-subunit. This work is another demonstration of successful PEGylation of a cysteine-knot protein by an engineered cysteine mutation.


Subject(s)
Polyethylene Glycols/administration & dosage , Polyethylene Glycols/chemistry , Thyrotropin/administration & dosage , Thyrotropin/chemistry , Amino Acid Sequence , Animals , Binding Sites/drug effects , Binding Sites/physiology , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/chemistry , Female , Humans , Male , Molecular Sequence Data , Protein Binding/drug effects , Protein Binding/physiology , Rats , Rats, Sprague-Dawley , Thyrotropin/genetics , Time Factors
9.
Bioconjug Chem ; 23(12): 2354-64, 2012 Dec 19.
Article in English | MEDLINE | ID: mdl-23176598

ABSTRACT

Vascular endothelial growth factor (VEGF) neutralizing antagonists including antibodies or receptor extracellular domain Fc fusions have been applied clinically to control angiogenesis in cancer, wet age-related macular degeneration, and edema. We report here the generation of high-affinity VEGF-binding domains by chemical linkage of the second domain of the VEGF receptor Flt-1 (D2) in several configurations. Recombinant D2 was expressed with a 13 a.a. C-terminal tag, including a C-terminal cysteine to enable its dimerization by disulfide bond formation or by attachment to divalent PEGs and oligomerization by coupling to multivalent PEGs. Disulfide-linked dimers produced by Cu(2+) oxidation of the free-thiol form of the protein demonstrated picomolar affinity for VEGF in solution, comparable to that of a D2-Fc fusion (sFLT01) and ~50-fold higher than monomeric D2, suggesting the 26 a.a. tag length between the two D2 domains permits simultaneous interaction of both faces of the VEGF homodimer. Extending the separation between the D2 domains by short PEG spacers from 0.35 kD to 5 kD produced a modest ~2-fold increase in affinity over the disulfide, thus defining the optimal distance between the two D2 domains for maximum affinity. By surface plasmon resonance (SPR), a larger (~5-fold) increase in affinity was observed by conjugation of the D2 monomer to the termini of 4-arm PEG, and yielding a product with a larger hydrodynamic radius than sFLT01. The higher affinity displayed by these D2 PEG tetramers than either D2 dimer or sFLT01 was largely a consequence of a slower rate of dissociation, suggesting the simultaneous binding by these tetramers to neighboring surface-bound VEGF. Finally, disulfide-linked D2 dimers showed a greater resistance to autocatalytic fragmentation than sFLT01 under elevated temperature stress, indicating such minimum-sequence constructs may be better suited for sustained-release formulations. Therefore, these constructs represent novel Fc-independent VEGF antagonists with ultrahigh affinity, high stability, and a range of hydrodynamic radii for application to multiple therapeutic targets.


Subject(s)
Polyethylene Glycols/chemistry , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-1/chemistry , Copper/chemistry , Cysteine/chemistry , Dimerization , Disulfides/chemistry , HEK293 Cells , Humans , Kinetics , Molecular Targeted Therapy , Molecular Weight , Oxidation-Reduction , Protein Conformation , Protein Stability , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Structure-Activity Relationship , Surface Plasmon Resonance , Vascular Endothelial Growth Factor A/chemistry , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor Receptor-1/genetics
10.
Mol Cell Neurosci ; 39(2): 211-7, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18638559

ABSTRACT

Dopamine (DA) reuptake terminates dopaminergic neurotransmission and is mediated by DA transporters (DATs). Acute protein kinase C (PKC) activation accelerates DAT internalization rates, thereby reducing DAT surface expression. Basal DAT endocytosis and PKC-stimulated DAT functional downregulation rely on residues within the 587-596 region, although whether PKC-induced DAT downregulation reflects transporter endocytosis mechanisms linked to those controlling basal endocytosis rates is unknown. Here, we define residues governing basal and PKC-stimulated DAT endocytosis. Alanine substituting DAT residues 587-590 1) abolished PKC stimulation of DAT endocytosis, and 2) markedly accelerated basal DAT internalization, comparable to that of wildtype DAT during PKC activation. Accelerated basal DAT internalization relied specifically on residues 588-590, which are highly conserved among SLC6 neurotransmitter transporters. Our results support a model whereby residues within the 587-590 stretch may serve as a locus for a PKC-sensitive braking mechanism that tempers basal DAT internalization rates.


Subject(s)
Dopamine Plasma Membrane Transport Proteins/chemistry , Dopamine Plasma Membrane Transport Proteins/metabolism , Endocytosis/drug effects , Protein Kinase C/pharmacology , Alanine/genetics , Animals , Biotinylation/methods , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/genetics , Endocytosis/physiology , PC12 Cells , Protein Structure, Tertiary/physiology , Rats , Transfection/methods
11.
Neuropharmacology ; 54(3): 605-12, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18164041

ABSTRACT

Amphetamine (AMPH) is a potent dopamine (DA) transporter (DAT) inhibitor that markedly increases extracellular DA levels. In addition to its actions as a DAT antagonist, acute AMPH exposure induces DAT losses from the plasma membrane, implicating transporter-specific membrane trafficking in amphetamine's actions. Despite reports that AMPH modulates DAT surface expression, the trafficking mechanisms leading to this effect are currently not defined. We recently reported that DAT residues 587-596 play an integral role in constitutive and protein kinase C (PKC)-accelerated DAT internalization. In the current study, we tested whether the structural determinants required for PKC-stimulated DAT internalization are necessary for AMPH-induced DAT sequestration. Acute amphetamine exposure increased DAT endocytic rates, but DAT carboxy terminal residues 587-590, which are required for PKC-stimulated internalization, were not required for AMPH-accelerated DAT endocytosis. AMPH decreased DAT endocytic recycling, but did not modulate transferrin receptor recycling, suggesting that AMPH does not globally diminish endocytic recycling. Finally, treatment with a PKC inhibitor demonstrated that AMPH-induced DAT losses from the plasma membrane were not dependent upon PKC activity. These results suggest that the mechanisms responsible for AMPH-mediated DAT internalization are independent from those governing PKC-sensitive DAT endocytosis.


Subject(s)
Amphetamine/pharmacology , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Uptake Inhibitors/pharmacology , Endocytosis/drug effects , Gene Expression Regulation/drug effects , Protein Kinase C/physiology , Animals , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/genetics , Enzyme Inhibitors/pharmacology , Mutagenesis , PC12 Cells/drug effects , Protein Transport/drug effects , Rats , Time Factors , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...