Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Inorg Biochem ; 240: 112110, 2023 03.
Article in English | MEDLINE | ID: mdl-36596265

ABSTRACT

Nine ruthenium CNC pincer complexes (1-9) were tested for anticancer activity in cell culture under both dark and light conditions. These complexes included varied CNC pincer ligands including OH, OMe, or Me substituents on the pyridyl ring and wingtip N-heterocyclic carbene (NHC) groups which varied as methyl (Me), phenyl (Ph), mesityl (Mes), and 2,6-diisopropylphenyl (Dipp). The supporting ligands included acetonitrile, Cl, and 2,2'-bipyridine (bpy) donors. The synthesis of complexes 8 and 9 is described herein and are fully characterized by spectroscopic (1H NMR, IR, UV-Vis, MS) and analytical techniques. Single crystal X-ray diffraction results are reported herein for 8 and 9. The other complexes (1-7) are reported elsewhere. The four most lipophilic ruthenium complexes (6, 7, 8, and 9) showed the best activity vs. MCF7 cancer cells with complexes 6 and 9 showing cytotoxicity and complex 7 and 8 showing light activated photocytotoxicity. The distribution of these compounds between octanol and water is reported as log(Do/w) values, and increasing log(Do/w) values correlate roughly with improved activity vs. cancer cells. Overall, lipophilic wingtip groups (e.g. Ph, Mes, Dipp) on the NHC ring and a lower cationic charge (1+ vs. 2+) appears to be beneficial for improved anticancer activity.


Subject(s)
Ruthenium , Humans , Ruthenium/chemistry , Ligands , Magnetic Resonance Spectroscopy
2.
Inorg Chem ; 58(12): 8012-8020, 2019 Jun 17.
Article in English | MEDLINE | ID: mdl-31185538

ABSTRACT

Five ruthenium catalysts described herein facilitate self-sensitized carbon dioxide reduction to form carbon monoxide with a ruthenium catalytic center. These catalysts include four new and one previously reported CNC pincer complexes featuring a pyridinol derived N-donor and N-heterocyclic carbene (NHC) C-donors derived from imidazole or benzimidazole. The complexes have been characterized fully by spectroscopic and analytic methods, including X-ray crystallography. Introduction of a 2,2'-bipyridine (bipy) coligand and phenyl groups on the NHC ligand was necessary for rapid catalysis. [(CNC)Ru(bipy)(CH3CN)](OTf)2 is among the most active and durable photocatalysts in the literature for CO2 reduction without an external photosensitizer. The role of the structure of this complex in catalysis is discussed, including the importance of the pincer's phenyl wingtips, the bipyridyl ligand, and a weakly coordinating monodentate ligand.

3.
Chem Commun (Camb) ; 53(81): 11217-11220, 2017 Oct 18.
Article in English | MEDLINE | ID: mdl-28956560

ABSTRACT

A new pincer ligand with N-heterocyclic carbene (NHC) and 4-pyridinol-derived rings supports ruthenium complexes for photocatalytic CO2 reduction. The methoxy group on the pyridine ring offers unique catalysis advantages not seen with the unsubstituted analog. Our best catalyst offers selective CO formation, ∼250 turnover cycles, and a 40 h lifetime.

SELECTION OF CITATIONS
SEARCH DETAIL
...