Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38003530

ABSTRACT

Validating animal pain models is crucial to enhancing translational research and response to pharmacological treatment. This study investigated the effects of a calibrated slight exercise protocol alone or combined with multimodal analgesia on sensory sensitivity, neuroproteomics, and joint structural components in the MI-RAT model. Joint instability was induced surgically on day (D) 0 in female rats (N = 48) distributed into sedentary-placebo, exercise-placebo, sedentary-positive analgesic (PA), and exercise-PA groups. Daily analgesic treatment (D3-D56) included pregabalin and carprofen. Quantitative sensory testing was achieved temporally (D-1, D7, D21, D56), while cartilage alteration (modified Mankin's score (mMs)) and targeted spinal pain neuropeptide were quantified upon sacrifice. Compared with the sedentary-placebo (presenting allodynia from D7), the exercise-placebo group showed an increase in sensitivity threshold (p < 0.04 on D7, D21, and D56). PA treatment was efficient on D56 (p = 0.001) and presented a synergic anti-allodynic effect with exercise from D21 to D56 (p < 0.0001). Histological assessment demonstrated a detrimental influence of exercise (mMs = 33.3%) compared with sedentary counterparts (mMs = 12.0%; p < 0.001), with more mature transformations. Spinal neuropeptide concentration was correlated with sensory sensitization and modulation sites (inflammation and endogenous inhibitory control) of the forced mobility effect. The surgical MI-RAT OA model coupled with calibrated slight exercise demonstrated face and predictive validity, an assurance of higher clinical translatability.


Subject(s)
Neuropeptides , Osteoarthritis , Animals , Female , Rodentia , Pain/drug therapy , Osteoarthritis/pathology , Neuropeptides/therapeutic use , Analgesics/pharmacology
2.
Naunyn Schmiedebergs Arch Pharmacol ; 395(6): 703-715, 2022 06.
Article in English | MEDLINE | ID: mdl-35318491

ABSTRACT

PURPOSE: Several observational studies suggest that estrogens could bias pain perception. To evaluate the influence of estrogenic impregnation on pain expression, a prospective, randomized, controlled, blinded study was conducted in a Sprague-Dawley rat model of surgically induced osteoarthritis (OA). METHODS: Female rats were ovariectomized and pre-emptive 17ß-estradiol (0.025 mg, 90-day release time) or placebo pellets were installed subcutaneously during the OVX procedures. Thirty-five days after, OA was surgically induced on both 17ß-estradiol (OA-E) and placebo (OA-P) groups. Mechanical hypersensitivity was assessed by static weight-bearing (SWB) and paw withdrawal threshold (PWT) tests. Mass spectrometry coupled with high-performance liquid chromatography (HPLC-MS) was performed to quantify the spinal pronociceptive neuropeptides substance P (SP), calcitonin gene-related peptide (CGRP), bradykinin (BK), somatostatin (SST), and dynorphin-A (Dyn-A). RESULTS: Compared to control, ovariectomized rats presented higher SP (P = 0.009) and CGRP (P = 0.017) concentrations. OA induction increased the spinal level of SP (+ 33%, P < 0.020) and decreased the release of BK (- 20%, (P < 0.037)). The OA-E rats at functional assessment put more % body weight on the affected hind limb than OA-P rats at D7 (P = 0.027) and D56 (P = 0.033), and showed higher PWT at D56 (P = 0.009), suggesting an analgesic and anti-allodynic effect of 17ß-estradiol. Interestingly, the 17ß-estradiol treatment counteracted the increase of spinal concentration of Dyn-A (P < 0.016) and CGRP (P < 0.018). CONCLUSION: These results clearly indicate that 17ß-estradiol interfers with the development of central sensitization and confirm that gender dimorphism should be considered when looking at pain evaluation.


Subject(s)
Calcitonin Gene-Related Peptide , Osteoarthritis , Animals , Female , Rats , Calcitonin Gene-Related Peptide/metabolism , Estradiol/pharmacology , Osteoarthritis/drug therapy , Pain/metabolism , Prospective Studies , Rats, Sprague-Dawley , Substance P/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...