Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Chemosphere ; 361: 142503, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825242

ABSTRACT

There is considerable interest in addressing soils contaminated with per- and polyfluoroalkyl substances (PFAS) because of the PFAS in the environment and associated health risks. The neutralization of PFAS in situ is challenging. Consequently, mobilizing the PFAS from the contaminated soils into an aqueous solution for subsequent handling has been pursued. Nonetheless, the efficiency of mobilization methods for removing PFAS can vary depending on site-specific factors, including the types and concentrations of PFAS compounds, soil characteristics. In the present study, the removal of perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) from artificially contaminated soils was investigated in a 2D laboratory setup using electrokinetic (EK) remediation and hydraulic flushing by applying a hydraulic gradient (HG) for a duration of 15 days. The percent removal of PFOA by EK was consistent (∼80%) after a 15-day treatment for all soils. The removal efficiency of PFOS by EK significantly varied with the OM content, where the PFOS removal increased from 14% at 5% OM to 60% at 50% OM. With HG, the percent removal increased for both PFOA and PFOS from about 20% at 5% OM up to 80% at 75% OM. Based on the results, the mobilization of PFAS from organic soil would be appropriate using both hydraulic flushing and EK considering their applicability and advantages over each other for site-specific factors and requirements.

2.
Environ Sci Technol ; 58(14): 6313-6325, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38529628

ABSTRACT

Urban air quality persists as a global concern, with critical health implications. This study employs a combination of machine learning (gradient boosting regression, GBR) and spatial analysis to better understand the key drivers behind air pollution and its prediction and mitigation strategies. Focusing on New York City as a representative urban area, we investigate the interplay between urban characteristics and weather factors, showing that urban features, including traffic-related parameters and urban morphology, emerge as crucial predictors for pollutants closely associated with vehicular emissions, such as elemental carbon (EC) and nitrogen oxides (NOx). Conversely, pollutants with secondary formation pathways (e.g., PM2.5) or stemming from nontraffic sources (e.g., sulfur dioxide, SO2) are predominantly influenced by meteorological conditions, particularly wind speed and maximum daily temperature. Urban characteristics are shown to act over spatial scales of 500 × 500 m2, which is thus the footprint needed to effectively capture the impact of urban form, fabric, and function. Our spatial predictive model, needing only meteorological and urban inputs, achieves promising results with mean absolute errors ranging from 8 to 32% when using full-year data. Our approach also yields good performance when applied to the temporal mapping of spatial pollutant variability. Our findings highlight the interacting roles of urban characteristics and weather conditions and can inform urban planning, design, and policy.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Particulate Matter/analysis , Environmental Monitoring/methods , Air Pollution/analysis , Weather , Machine Learning
3.
Mar Pollut Bull ; 196: 115602, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37806015

ABSTRACT

Microplastics pose a significant and growing threat to marine ecosystems and human health. Rivers serve as critical pathways for the entry of inland-produced microplastics into marine environments. In this paper, we developed a numerical modeling scheme using OpenFOAM to investigate the fate and transport of microplastics in a river system. Our simulation results show that microplastics undergo significant aggregation and breakage as they are transported downstream by river flows. This significantly alters the particle size distribution of microplastics. The aggregation-breakage process is mainly controlled by river hydrodynamics and pollution scale. Our findings suggest that a significant extent of particle aggregation occurs at an early stage of the release of microplastics in the river, while the aggregation-breakage process becomes limited as the microplastic plume is gradually dispersed and diluted downstream. Eddy diffusivity drives the dispersion of the microplastic plume in the river, and its spatial patterns affect the aggregation-breakage process.


Subject(s)
Microplastics , Water Pollutants, Chemical , Humans , Plastics , Hydrodynamics , Ecosystem , Water Pollutants, Chemical/analysis , Environmental Monitoring
4.
J Hazard Mater ; 459: 132160, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37562351

ABSTRACT

Oil weathering models are essential for predicting the behavior of spilled oil in the environment. Most models use a "Pseudo Component" (PC) approach to represent the wide range of compounds found in petroleum products. Within the approach, rather than modeling each individual compound in an oil, a manageable number of PCs are developed that represent whole classes of compounds. However, previous studies focused mainly on traditional crude oils and did not develop a generic approach to create an optimal set of PCs for a variety of oils. In developing the updates to the NOAA oil weathering model, we propose herein a generic approach to construct PCs using oil distillation data to capture the complexity of oil evaporative weathering. We validated our approach with 899 oils from the Automated Data Inquiry for Oil Spills (ADIOS) oil library and found that an optimal set of sixteen PCs should be used. These PCs include two with low boiling point (below 144 °C), one with a high boiling point (above 400 °C), and thirteen constructed within a middle range of boiling points with a temperature resolution of 20 °C. Our simulation tests suggested that this set of sixteen PCs adequately characterizes oil evaporation processes for a wide variety of oils.

5.
Mar Pollut Bull ; 192: 115143, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37295253

ABSTRACT

Oil dispersion by the application of chemical dispersants is an important tool in oil spill response, but it is difficult to quantify in the field in a timely fashion that is useful for coordinators and decision-makers. One option is the use of rugged portable field fluorometers that can deliver essentially instantaneous results if access is attainable. The United States Coast Guard has suggested, in their Special Monitoring of Applied Response Technologies (SMART) protocols, that successful oil dispersion can be identified by a five-fold increase in oil fluorescence. Here we test three commercial fluorometers with different excitation/emission windows (SeaOWL, Cyclops 7FO, and Cyclops 7F-G) that might prove useful for such applications. Results show that they have significantly different dynamic ranges for detecting oil and that using them (or similar instruments) in combination is probably the best option for successfully assessing the effectiveness of oil dispersion operations. Nevertheless, the rapid dilution of dispersed oil means that measurements must be made within an hour or two of dispersion, suggesting that one feasible scenario would be monitoring ship-applied dispersants by vessels following close behind the dispersant application vessel. Alternatively, autonomous submersibles might be pre-deployed to monitor aerial dispersant application, although the logistical challenges in a real spill would be substantial.


Subject(s)
Military Personnel , Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Humans , Minocycline , Water Pollutants, Chemical/analysis , Petroleum/analysis , Petroleum Pollution/analysis
6.
Environ Pollut ; 322: 121160, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36716947

ABSTRACT

The need for the efficient remediation of soils impacted by per- and polyfluoroalkyl substances (PFAS) is substantially growing because of the notable upsurge in societal and regulatory awareness of this class of chemicals. To remediate PFAS-contaminated soils using mobilization approaches, the choice of appropriate techniques highly depends on the soil's composition, particularly the clay content, which significantly affects the soil's permeability. Here, we investigated the PFAS mobilization efficiency from soils with different clay contents by using two techniques: electrokinetic (EK) remediation and hydraulic flushing. Artificial kaolinite was added to a loamy sand soil to prepare four soil blends with clay contents of 5, 25, 50, and 75%, each contaminated with perfluorooctanoic acid (PFOA) and perfulorooctanesulfonic acid (PFOA) at 10,000 µg/kg. EK remediation was conducted by applying a low voltage (30 V) with a current of 100 mA, and hydraulic flushing was carried out by applying a hydraulic gradient (HG) with a slope of 6.7%. Results show that, with a 14-day treatment duration, the EK-mobilization efficiency was enhanced substantially with the increase of clay content (removal of PFOS increased from 20% at 5% clay to 80% at 75% clay), most likely due to the increase of electroosmotic flow due to the higher content of particles having a zeta potential (i.e., clay). For HG, increasing the clay content significantly suppressed the mobilization of PFAS (removal of PFOS decreased from 40% at 5% clay to 10% at 75% clay) due to a notable decrease in the soil's permeability. Based on the results, applying hydraulic flushing and washing techniques for mobilizing PFAS would be appropriate when treating permeable soils with a maximum clay content of about 25%; otherwise, other suitable mobilization techniques such as EKs should be considered.


Subject(s)
Fluorocarbons , Soil Pollutants , Clay , Soil/chemistry , Soil Pollutants/analysis , Environmental Pollution
7.
Ann Rev Mar Sci ; 15: 67-93, 2023 01 16.
Article in English | MEDLINE | ID: mdl-35773215

ABSTRACT

The Deepwater Horizon oil spill in the Gulf of Mexico in 2010 was the largest in US history, covering more than 1,000 km of shorelines and causing losses that exceeded $50 billion. While oil transformation processes are understood at the laboratory scale, the extent of the Deepwater Horizon spill made it challenging to integrate these processes in the field. This review tracks the Deepwater Horizon oil during its journey from the Mississippi Canyon block 252 (MC252) wellhead, first discussing the formation of the oil and gas plume and the ensuing oil droplet size distribution, then focusing on the behavior of the oil on the water surface with and without waves. It then reports on massive drifter experiments in the Gulf of Mexico and the impact of the Mississippi River on the oil transport. Finally, it concludes by addressing the formation of oil-particle aggregates. Although physical processes lend themselves to numerical modeling, we attempted to elucidate them without using advanced modeling, as our goal is to enhance communication among scientists, engineers, and other entities interested in oil spills.


Subject(s)
Petroleum Pollution , Water Pollutants, Chemical , Gulf of Mexico , Water Pollutants, Chemical/analysis
8.
Mar Pollut Bull ; 186: 114377, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36493519

ABSTRACT

Deepwater hydrocarbon releases experience complex chemical and physical processes. To assess simplifications of these processes on model predictions, we present a sensitivity analysis using simulations for the Deepwater Horizon oil spill. We compare the buoyant multiphase plume metrics (trap height, rise time etc), the hydrocarbon mass flowrates at the near-field plume termination and their mass fractions dissolved in the water column and reaching the water surface. The baseline simulation utilizes a 19-component hydrocarbon model, live-fluid state equations, hydrate dynamics, and heat and mass transfer. Other simulations turn-off each of these processes, with the simplest one using inert oil and methane gas. Plume metrics are the least sensitive to the modeled processes and can be matched by adjusting the release buoyancy flux. The mass flowrate metrics are more sensitive. Both liquid- and gas-phase mass transfer should be modeled for accurate tracking of soluble components (e.g. C1 - C7 hydrocarbons) in the environment.


Subject(s)
Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Hydrodynamics , Water Pollutants, Chemical/analysis , Petroleum Pollution/analysis , Thermodynamics , Water/analysis , Chemical Phenomena , Hydrocarbons/analysis , Gulf of Mexico , Petroleum/analysis
9.
Sci Total Environ ; 859(Pt 1): 160187, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36395828

ABSTRACT

The resilience of communities has emerged as a major goal in policy and practice. Cities, states, and counties within the United States and around the world are passing laws requiring the incorporation of climate-related hazard vulnerability assessments within their master plan updates for resilience planning and design. The resilience of communities under present and future scenarios is thus becoming a cornerstone of decision making and actions. Decisions that would enhance resilience, however, span multiple sectors and involve various stakeholders. Quantifying community resilience is a key step in order to describe the preparedness level of communities, and subsequently locating non-resilient areas to further enhance their capacity to endure disasters. Two main approaches are currently being pursued to evaluate resilience. The first approach is the "community resilience" developed mainly by social scientists and planners, and it captures social resilience using numerous pre-disaster attributes to describe the functioning of a community. This approach subsumes that pre-disaster attributes can predict the community resilience to a disaster. The second approach is adopted for infrastructure resilience, mostly used by engineers, and it focuses on robustness, redundancy, resourcefulness, and rapidity. This approach is appropriate for systems that are operated by highly skilled personnel and where the actions are of engineering type. In this paper, we provide an overview of the two approaches, and we leverage their limitations to propose a hybrid approach that combines community and infrastructure capitals into an Area Resilience metric, called ARez. ARez captures the role/impact of both infrastructure and community and combines five sectors: energy, public health, natural ecosystem, socio-economic, and transportation. We present a proof-of-concept for the ARez metric, showing its practicality and applicability as a direct measure for resilience, over various time scales.


Subject(s)
Disaster Planning , Disasters , United States , Ecosystem , Public Health , Cities , Transportation
10.
Mar Pollut Bull ; 184: 114114, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36148742

ABSTRACT

We present an analysis of 2225 simulations of artificial oil well blowouts in nearshore and offshore waters of Newfoundland, Canada. In the simulations, we coupled the VDROP-J and TAMOC models to simulate the fate and transport of oil and gas from the release to the sea surface. Simulations were conducted with and without subsea dispersant injection. We analyzed the simulation database to quantify the mass fraction of oil and gas that surfaces, the mass fraction of released benzene that surfaces, and the horizontal offset to the surfacing zone. These data are also synthesized to yield empirical correlations to predict these output metrics from key input parameters. These correlations are summarized in an excel spreadsheet that allows rapid evaluation of spill dynamics with minimal initial knowledge of spill details. We call this tool an offshore response guidance table, which allows exploration of spill dynamics under diverse spill and response options.


Subject(s)
Oil and Gas Fields , Petroleum Pollution , Petroleum Pollution/analysis , Benzene , Computer Simulation , Canada
11.
J Hazard Mater ; 439: 129403, 2022 10 05.
Article in English | MEDLINE | ID: mdl-35908393

ABSTRACT

In situ burning (ISB) hasn't been widely used for offshore oil spill response for various reasons. We present a feasibility study for a new ISB method - the Burning Tongue (BT) concept. We conducted scaled experiments in the Ohmsett wave tank to demonstrate its feasibility. We produced a 35-m long "tongue" of burnable oil (average oil thickness 4.2 mm - above the thickness needed for ISB) by towing a conventional boom (with a 12″ (0.3 m) deep skirt) partially filled with crude oil and then released the oil through a 6″ (0.15 m) wide opening at the apex. We found that the boom movement produced a convergence zone just downstream that kept released oil thick and also pulled oil that entrained under the boom skirt into the thick "tongue" of oil. CFD modeling was performed to explain the flow hydrodynamics and the formation of the convergence zone, which indicates the phenomenon is universal. We used small harbor boom only partially filled with oil for this study and believe that a full-scale marine boom filled with oil would achieve an even thicker "burning tongue." The BT concept could make ISB more widely used for oil spill response in offshore areas.


Subject(s)
Burns , Petroleum Pollution , Petroleum , Humans , Petroleum Pollution/analysis , Proof of Concept Study
12.
J Hazard Mater ; 436: 129211, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35739733

ABSTRACT

Oil spills have been recognized as among the worst kinds of environmental disasters, causing severe coastal ecological and economic damages. Although benthic flow and solute fluxes are known to have strong impacts on fate and transport of oil deposited within marine sediments, their endogenous mechanisms still remain to be uncovered. In this paper, simulations of flow and solute transport processes along with hydrocarbon biodegradation were conducted in a cylindrical benthic chamber system to investigate influences of benthic hydrodynamics on oil biodegradation in permeable marine sediments. Results show that ripple-flow interactions create subsurface recirculation cells whereby seawater infiltrates into the benthic sediments at ripple troughs while groundwater discharges near the crests. It results in a spatially varied oil biodegradation rate in marine sediments. Significant oil biodegradation occurs near sediment ripple troughs due to direct oxygen recharge, while biodegradation of oil deposited uphill becomes slow due to limited oxygen replenishment. Oil biodegradation decreases subsurface oxygen content, and consequently impedes discharge of oxygen from benthic sediments. Our results reveal a dynamic interaction between oil biodegradation and benthic flow and solute transport processes, which has strong implications for predicting oil persistence and biodegradation within marine sediments and its associated impacts on benthic biogeochemical processes.


Subject(s)
Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Biodegradation, Environmental , Geologic Sediments/chemistry , Oxygen , Petroleum Pollution/analysis , Water , Water Pollutants, Chemical/analysis
13.
J Hazard Mater ; 436: 129260, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35739779

ABSTRACT

Growing concerns over the risk of accidental releases of oil into the marine environment have emphasized our need to improve both oil spill preparedness and response strategies. Among the available spill response options, dispersants offer the advantages of breaking oil slicks into small oil droplets and promoting their dilution, dissolution, and biodegradation within the water column. Thus dispersants can reduce the probability of oil slicks at sea from reaching coastal regions and reduce their direct impact on mammals, sea birds and shoreline ecosystems. To facilitate marine oil spill response operations, especially addressing spill incidents in remote/Arctic offshore regions, an in-depth understanding of the transportation, fate and effects of naturally/chemically dispersed oil is of great importance. This review provides a synthesis of recent research results studies related to the application of dispersants at the surface and in the deep sea, the fate and transportation of naturally and chemically dispersed oil, and dispersant application in the Arctic and ice-covered waters. Future perspectives have been provided to identify the research gaps and help industries and spill response organizations develop science-based guidelines and protocols for the application of dispersants application.


Subject(s)
Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Animals , Biodegradation, Environmental , Ecosystem , Mammals/metabolism , Petroleum/metabolism , Petroleum Pollution/analysis , Petroleum Pollution/prevention & control , Water , Water Pollutants, Chemical/analysis
14.
Environ Sci Technol ; 56(12): 8124-8131, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35580303

ABSTRACT

The biodegradation of dispersed crude oil in the ocean is relatively rapid (a half-life of a few weeks). However, it is often much slower on shorelines, usually attributed to low moisture content, nutrient limitation, and higher oil concentrations in beaches than in dispersed plumes. Another factor may be the increased salinity of the upper intertidal and supratidal zones because these parts of the beach are potentially subject to prolonged evaporation and only intermittent inundation. We have investigated whether such an increase in salinity has inhibitory effects on oil biodegradation in seashores. Lightly weathered Hibernia crude oil was added to beach sand at 1 or 10 mL/kg, and fresh seawater, at salinities of 30, 90, and 160 g/L, was added to 20% saturation. The biodegradation of oil was slower at higher salinities, where the half-life increased from 40 days at 30 g/L salts to 58 and 76 days at 90 and 160 g/L salts, respectively, and adding fertilizers somewhat enhanced oil biodegradation. Increased oil concentration in the sand, from 1 to 10 mL/kg, slowed the half-life by about 10-fold. Consequently, occasional irrigation with fertilization could be a suitable bioremediation strategy for the upper parts of contaminated beaches. However, dispersing oil at sea is probably the most suitable option for the optimal removal of spilled crude oil from the marine environment.


Subject(s)
Petroleum Pollution , Petroleum , Biodegradation, Environmental , Hydrocarbons/metabolism , Petroleum/metabolism , Salts , Sand
15.
Mar Pollut Bull ; 176: 113451, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35189534

ABSTRACT

The dispersion of oil droplets near ocean surface is important for evaluating the impact to the environment. Under breaking wave conditions, the surface oil experiences mainly two processes: the generation of oil droplets at/near the water surface, and the transport of oil droplets due to ocean dynamics. We investigated the vertical behavior by incorporating the transport equation and the VDROP model. The transport equation adopted the ocean dynamics by K-profile parameterization (KPP) and the impact of additional turbulence by imposing the energy dissipation rate on the ocean surface. The oil droplet distribution was obtained, and the entrained distribution and entrainment rate was computed. The results shows that although the entrained distribution and the entrainment rate shares certain consistency with previous studies, divergences are also noticed. Accordingly, the model that describes the physics should be adopted to avoid incorrect qualification of the oil concentration dispersed in the ocean.


Subject(s)
Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Models, Theoretical , Oceans and Seas , Petroleum Pollution/analysis , Water Pollutants, Chemical/analysis
16.
Environ Sci Technol ; 55(20): 13792-13801, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34617733

ABSTRACT

The 2010 Deepwater Horizon (DWH) blowout released 3.19 million barrels (435 000 tons) of crude oil into the Gulf of Mexico. Driven by currents and wind, an estimated 22 000 tons of spilled oil were deposited onto the northeastern Gulf shorelines, adversely impacting the ecosystems and economies of the Gulf coast regions. In this work we present field work conducted at the Gulf beaches in three U.S. States during 2010-2011: Louisiana, Alabama, and Florida, to explore endogenous mechanisms that control persistence and biodegradation of the MC252-oil deposited within beach sediments as deep as 50 cm. The work involved over 1500 measurements incorporating oil chemistry, hydrocarbon-degrading microbial populations, nutrient and DO concentrations, and intrinsic beach properties. We found that intrinsic beach capillarity along with groundwater depth provides primary controls on aeration and infiltration of near-surface sediments, thereby modulating moisture and redox conditions within the oil-contaminated zone. In addition, atmosphere-ocean-groundwater interactions created hypersaline sediment environments near the beach surface at all the studied sites. The fact that the oil-contaminated sediments retained near or above 20% moisture content and were also eutrophic and aerobic suggests that the limiting factor for oil biodegradation is the hypersaline environment due to evaporation, a fact not reported in prior studies. These results highlight the importance of beach porewater hydrodynamics in generating unique hypersaline sediment environments that inhibited oil decomposition along the Gulf shorelines following DWH.


Subject(s)
Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Gulf of Mexico , Petroleum/analysis , Petroleum Pollution/analysis , Water , Water Pollutants, Chemical/analysis
17.
J Hazard Mater ; 416: 125919, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34492851

ABSTRACT

The salinity of the upper parts of seashores can become higher than seawater due to evaporation between tidal inundations. Such hypersaline ecosystems, where the salinity can reach up to eight-fold higher than that of seawater (30-35 g/L), can be contaminated by oil spills. Here we investigate whether such an increase has inhibitory effects on oil biodegradation. Seawater was evaporated to a concentrated brine and added to fresh seawater to generate high salinity microcosms. Artificially weathered Hibernia crude oil was added, and biodegradation was followed for 76 days. First-order rate constants (k) for the biodegradation of GC-detectable hydrocarbons showed that the hydrocarbonoclastic activity was substantially inhibited at high salt - k decreased by ~75% at 90 g/L salts and ~90% at 160 g/L salts. This inhibition was greatest for the alkanes, although it extended to all classes of compounds measured, with the smallest effect on four-ring aromatics (e.g., chrysenes). Genera of well-known aerobic hydrocarbonoclastic bacteria were only identified at 30 g/L salts in the presence of oil, and only a few halophilic Archaea showed a slight enrichment at higher salt concentrations. These results indicate that biodegradation of spilled oil will likely be slowed in supratidal ecosystems and suggest that occasional irrigation of oiled supratidal zones could be a useful supporting strategy to remediation processes.


Subject(s)
Petroleum Pollution , Petroleum , Biodegradation, Environmental , Ecosystem , Hydrocarbons , Seawater
18.
Mar Pollut Bull ; 170: 112665, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34186450

ABSTRACT

The use of dispersants can be an effective response tool for large offshore spills by applying dispersants on unemulsified slicks and treating as much oil as possible before it becomes too viscous. Assessing the dispersibility of an oil slick under actual environmental conditions is an important step in spill response decision-making. This research seeks to develop a new field kit that is quick and reliable and could be used by spill response personnel without scientific training. The resulting Dispersibility Assessment Kit (DAK) incorporates an automated mixing unit to standardize the applied energy, thereby eliminating the variability in "hand mixing" that is used in other dispersant field kits. The automated mixing energy was studied to determine the optimal mixing regime that correlates with ocean conditions and was incorporated in the DAK protocol. The DAK was validated against 14 oils and emulsions and was successfully tested by response personnel during at-sea demonstration.


Subject(s)
Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Emulsions , Petroleum/analysis , Petroleum Pollution/analysis , Viscosity , Water Pollutants, Chemical/analysis
19.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Article in English | MEDLINE | ID: mdl-33958443

ABSTRACT

The tempo-spatial patterns of Covid-19 infections are a result of nested personal, societal, and political decisions that involve complicated epidemiological dynamics across overlapping spatial scales. High infection "hotspots" interspersed within regions where infections remained sporadic were ubiquitous early in the outbreak, but the spatial signature of the infection evolved to affect most regions equally, albeit with distinct temporal patterns. The sparseness of Covid-19 infections in the United States was analyzed at scales spanning from 10 to 2,600 km (county to continental scale). Spatial evolution of Covid-19 cases in the United States followed multifractal scaling. A rapid increase in the spatial correlation was identified early in the outbreak (March to April). Then, the increase continued at a slower rate and approached the spatial correlation of human population. Instead of adopting agent-based models that require tracking of individuals, a kernel-modulated approach is developed to characterize the dynamic spreading of disease in a multifractal distributed susceptible population. Multiphase Covid-19 epidemics were reasonably reproduced by the proposed kernel-modulated susceptible-infectious-recovered (SIR) model. The work explained the fact that while the reproduction number was reduced due to nonpharmaceutical interventions (e.g., masks, social distancing, etc.), subsequent multiple epidemic waves still occurred; this was due to an increase in susceptible population flow following a relaxation of travel restrictions and corollary stay-at-home orders. This study provides an original interpretation of Covid-19 spread together with a pragmatic approach that can be imminently used to capture the spatial intermittency at all epidemiologically relevant scales while preserving the "disordered" spatial pattern of infectious cases.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , COVID-19/metabolism , Humans , Masks/trends , Models, Theoretical , Pandemics , Physical Distancing , SARS-CoV-2/isolation & purification , United States/epidemiology
20.
Mar Pollut Bull ; 167: 112313, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33839574

ABSTRACT

Marine oil spills pose a significant threat to ocean and coastal ecosystems. In addition to costs incurred by response activities, an economic burden could be experienced by stakeholders dependent on coastal resources. Decision support tools for oil spill response (OSR-DSTs) have been playing an important role during oil spill response operations. This paper aims to provide an insight into the status of research on OSR-DSTs and identify future directions. Specifically, a systematic review is conducted including an examination of the advantages and limitations of currently applied and emerging decision support techniques for oil spill response. In response to elevated environmental concerns for protecting the polar ecosystem, the review includes a discussion on the use of OSR-DSTs in cold regions. Based on the analysis of information acquired, recommendations for future work on the development of OSR-DSTs to support the selection and implementation of spill response options are presented.


Subject(s)
Petroleum Pollution , Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL
...