Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1129319, 2023.
Article in English | MEDLINE | ID: mdl-37032845

ABSTRACT

The fungal pathogen Colletotrichum graminicola causes the anthracnose of maize (Zea mays) and is responsible for significant yield losses worldwide. The genome of C. graminicola was sequenced in 2012 using Sanger sequencing, 454 pyrosequencing, and an optical map to obtain an assembly of 13 pseudochromosomes. We re-sequenced the genome using a combination of short-read (Illumina) and long-read (PacBio) technologies to obtain a chromosome-level assembly. The new version of the genome sequence has 13 chromosomes with a total length of 57.43 Mb. We detected 66 (23.62 Mb) structural rearrangements in the new assembly with respect to the previous version, consisting of 61 (21.98 Mb) translocations, 1 (1.41 Mb) inversion, and 4 (221 Kb) duplications. We annotated the genome and obtained 15,118 predicted genes and 3,614 new gene models compared to the previous version of the assembly. We show that 25.88% of the new assembly is composed of repetitive DNA elements (13.68% more than the previous assembly version), which are mostly found in gene-sparse regions. We describe genomic compartmentalization consisting of repeat-rich and gene-poor regions vs. repeat-poor and gene-rich regions. A total of 1,140 secreted proteins were found mainly in repeat-rich regions. We also found that ~75% of the three smallest chromosomes (minichromosomes, between 730 and 551 Kb) are strongly affected by repeat-induced point mutation (RIP) compared with 28% of the larger chromosomes. The gene content of the minichromosomes (MCs) comprises 121 genes, of which 83.6% are hypothetical proteins with no predicted function, while the mean percentage of Chr1-Chr10 is 36.5%. No predicted secreted proteins are present in the MCs. Interestingly, only 2% of the genes in Chr11 have homologs in other strains of C. graminicola, while Chr12 and 13 have 58 and 57%, respectively, raising the question as to whether Chrs12 and 13 are dispensable. The core chromosomes (Chr1-Chr10) are very different with respect to the MCs (Chr11-Chr13) in terms of the content and sequence features. We hypothesize that the higher density of repetitive elements and RIPs in the MCs may be linked to the adaptation and/or host co-evolution of this pathogenic fungus.

2.
Front Plant Sci ; 13: 1046418, 2022.
Article in English | MEDLINE | ID: mdl-36507428

ABSTRACT

Introduction: Soybean (Glycine max) is among the most important crops in the world, and its production can be threatened by biotic diseases, such as anthracnose. Soybean anthracnose is a seed-borne disease mainly caused by the hemibiotrophic fungus Colletotrichum truncatum. Typical symptoms are pre- and post-emergence damping off and necrotic lesions on cotyledons, petioles, leaves, and pods. Anthracnose symptoms can appear early in the field, causing major losses to soybean production. Material and Methods: In preliminary experiments, we observed that the same soybean cultivar can have a range of susceptibility towards different strains of C. truncatum, while the same C. truncatum strain can cause varying levels of disease severity in different soybean cultivars. To gain a better understanding of the molecular mechanisms regulating the early response of different soybean cultivars to different C. truncatum strains, we performed pathogenicity assays to select two soybean cultivars with significantly different susceptibility to two different C. truncatum strains and analyzed their transcriptome profiles at different time points of interaction (0, 12, 48, and 120 h post-inoculation, hpi). Results and Discussion: The pathogenicity assays showed that the soybean cultivar Gm1 is more resistant to C. truncatum strain 1080, and it is highly susceptible to strain 1059, while cultivar Gm2 shows the opposite behavior. However, if only trivial anthracnose symptoms appeared in the more resistant phenotype (MRP; Gm1-1080; Gm2-1059) upon 120 hpi, in the more susceptible phenotype (MSP; Gm-1059; Gm2- 1080) plants show mild symptoms already at 72 hpi, after which the disease evolved rapidly to severe necrosis and plant death. Interestingly, several genes related to different cellular responses of the plant immune system (pathogen recognition, signaling events, transcriptional reprogramming, and defense-related genes) were commonly modulated at the same time points only in both MRP. The list of differentially expressed genes (DEGs) specific to the more resistant combinations and related to different cellular responses of the plant immune system may shed light on the important host defense pathways against soybean anthracnose.

3.
Pathogens ; 10(11)2021 Nov 21.
Article in English | MEDLINE | ID: mdl-34832675

ABSTRACT

Colletotrichum is one of the most important plant pathogenic genus of fungi due to its scientific and economic impact. A wide range of hosts can be infected by Colletotrichum spp., which causes losses in crops of major importance worldwide, such as soybean. Soybean anthracnose is mainly caused by C. truncatum, but other species have been identified at an increasing rate during the last decade, becoming one of the most important limiting factors to soybean production in several regions. To gain a better understanding of the evolutionary origin of soybean anthracnose, we compared the repertoire of effector candidates of four Colletotrichum species pathogenic to soybean and eight species not pathogenic. Our results show that the four species infecting soybean belong to two lineages and do not share any effector candidates. These results strongly suggest that two Colletotrichum lineages have acquired the capability to infect soybean independently. This study also provides, for each lineage, a set of candidate effectors encoding genes that may have important roles in pathogenicity towards soybean offering a new resource useful for further research on soybean anthracnose management.

4.
Mol Plant Pathol ; 22(4): 393-409, 2021 04.
Article in English | MEDLINE | ID: mdl-33609073

ABSTRACT

Soybean (Glycine max) is one of the most important cultivated plants worldwide as a source of protein-rich foods and animal feeds. Anthracnose, caused by different lineages of the hemibiotrophic fungus Colletotrichum, is one of the main limiting factors to soybean production. Losses due to anthracnose have been neglected, but their impact may threaten up to 50% of the grain production. TAXONOMY: While C. truncatum is considered the main species associated with soybean anthracnose, recently other species have been reported as pathogenic on this host. Until now, it has not been clear whether the association of new Colletotrichum species with the disease is related to emerging species or whether it is due to the undergoing changes in the taxonomy of the genus. DISEASE SYMPTOMS: Typical anthracnose symptoms are pre- and postemergence damping-off; dark, depressed, and irregular spots on cotyledons, stems, petioles, and pods; and necrotic laminar veins on leaves that can result in premature defoliation. Symptoms may evolve to pod rot, immature opening of pods, and premature germination of grains. CHALLENGES: As accurate species identification of the causal agent is decisive for disease control and prevention, in this work we review the taxonomic designation of Colletotrichum isolated from soybean to understand which lineages are pathogenic on this host. We also present a comprehensive literature review of soybean anthracnose, focusing on distribution, symptomatology, epidemiology, disease management, identification, and diagnosis. We consider the knowledge emerging from population studies and comparative genomics of Colletotrichum spp. associated with soybean providing future perspectives in the identification of molecular factors involved in the pathogenicity process. USEFUL WEBSITE: Updates on Colletotrichum can be found at http://www.colletotrichum.org/. All available Colletotrichum genomes on GenBank can be viewed at http://www.colletotrichum.org/genomics/.


Subject(s)
Colletotrichum/isolation & purification , Glycine max/microbiology , Plant Diseases/microbiology , Colletotrichum/pathogenicity , Plant Leaves/microbiology , Virulence
5.
Phytopathology ; 110(9): 1497-1499, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32352862

ABSTRACT

Colletotrichum is a large genus of plant pathogenic fungi comprising more than 200 species. In this work, we present the genome sequences of four Colletotrichum species pathogenic to soybean: C. truncatum, C. plurivorum, C. musicola, and C. sojae. While C. truncatum is globally considered the most important pathogen, the other three species have been described and associated with soybean only recently. The genome sequences will provide insights into factors that contribute to pathogenicity toward soybean and will be useful for further research into the evolution of Colletotrichum.


Subject(s)
Colletotrichum , Plant Diseases , Glycine max , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...