Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
J Magn Reson ; 364: 107708, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38901173

ABSTRACT

Bacterial cell walls are gigadalton-large cross-linked polymers with a wide range of motional amplitudes, including rather rigid as well as highly flexible parts. Magic-angle spinning NMR is a powerful method to obtain atomic-level information about intact cell walls. Here we investigate sensitivity and information content of different homonuclear 13C13C and heteronuclear 1H15N, 1H13C and 15N13C correlation experiments. We demonstrate that a CPMAS CryoProbe yields ca. 8-fold increased signal-to-noise over a room-temperature probe, or a ca. 3-4-fold larger per-mass sensitivity. The increased sensitivity allowed to obtain high-resolution spectra even on intact bacteria. Moreover, we compare resolution and sensitivity of 1H MAS experiments obtained at 100 kHz vs. 55 kHz. Our study provides useful hints for choosing experiments to extract atomic-level details on cell-wall samples.

2.
J Am Chem Soc ; 146(13): 9252-9260, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38500259

ABSTRACT

The rapid spread of antimicrobial resistance across bacterial pathogens poses a serious risk to the efficacy and sustainability of available treatments. This puts pressure on research concerning the development of new drugs. Here, we present an in-cell NMR-based research strategy to monitor the activity of the enzymes located in the periplasmic space delineated by the inner and outer membranes of Gram-negative bacteria. We demonstrate its unprecedented analytical power in monitoring in situ and in real time (i) the hydrolysis of ß-lactams by ß-lactamases, (ii) the interaction of drugs belonging to the ß-lactam family with their essential targets, and (iii) the binding of inhibitors to these enzymes. We show that in-cell NMR provides a powerful analytical tool for investigating new drugs targeting the molecular components of the bacterial periplasm.


Subject(s)
Anti-Bacterial Agents , Periplasm , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Periplasm/metabolism , Bacteria , beta-Lactams , beta-Lactamases/metabolism , Magnetic Resonance Spectroscopy
3.
Nat Commun ; 14(1): 6706, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872144

ABSTRACT

Peptidoglycan, a gigadalton polymer, functions as the scaffold for bacterial cell walls and provides cell integrity. Peptidoglycan is remodelled by a large and diverse group of peptidoglycan hydrolases, which control bacterial cell growth and division. Over the years, many studies have focused on these enzymes, but knowledge on their action within peptidoglycan mesh from a molecular basis is scarce. Here, we provide structural insights into the interaction between short peptidoglycan fragments and the entire sacculus with two evolutionarily related peptidases of the M23 family, lysostaphin and LytM. Through nuclear magnetic resonance, mass spectrometry, information-driven modelling, site-directed mutagenesis and biochemical approaches, we propose a model in which peptidoglycan cross-linking affects the activity, selectivity and specificity of these two structurally related enzymes differently.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Humans , Peptidoglycan/chemistry , Hydrolases , Lysostaphin/analysis , Lysostaphin/chemistry , Mass Spectrometry/methods , Cell Wall/chemistry
4.
Sci Rep ; 10(1): 4051, 2020 03 04.
Article in English | MEDLINE | ID: mdl-32132631

ABSTRACT

MapZ localizes at midcell and acts as a molecular beacon for the positioning of the cell division machinery in the bacterium Streptococcus pneumoniae. MapZ contains a single transmembrane helix that separates the C-terminal extracellular domain from the N-terminal cytoplasmic domain. Only the structure and function of the extracellular domain is known. Here, we demonstrate that large parts of the cytoplasmic domain is intrinsically disordered and that there are two regions (from residues 45 to 68 and 79 to 95) with a tendency to fold into amphipathic helices. We further reveal that these regions interact with the surface of liposomes that mimic the Streptococcus pneumoniae cell membrane. The highly conserved and unfolded N-terminal region (from residues 17 to 43) specifically interacts with FtsZ independently of FtsZ polymerization state. Moreover, we show that MapZ phosphorylation at positions Thr67 and Thr68 does not impact the interaction with FtsZ or liposomes. Altogether, we propose a model in which the MapZ-mediated recruitment of FtsZ to mid-cell is modulated through competition of MapZ binding to the cell membrane. The molecular interplay between the components of this tripartite complex could represent a key step toward the complete assembly of the divisome.


Subject(s)
Bacterial Proteins/metabolism , Cell Membrane/metabolism , Cytoskeletal Proteins/metabolism , Streptococcus pneumoniae/metabolism , Bacterial Proteins/genetics , Cell Membrane/genetics , Cytoskeletal Proteins/genetics , Streptococcus pneumoniae/genetics
5.
Article in English | MEDLINE | ID: mdl-30718252

ABSTRACT

The Enterococcus faecium l,d-transpeptidase (Ldtfm) mediates resistance to most ß-lactam antibiotics in this bacterium by replacing classical peptidoglycan polymerases. The catalytic Cys of Ldtfm is rapidly acylated by ß-lactams belonging to the carbapenem class but not by penams or cephems. We previously reported quantum calculations and kinetic analyses for Ldtfm and showed that the inactivation profile is not determined by differences in drug binding (KD [equilibrium dissociation constant] values in the 50 to 80 mM range). In this study, we analyzed the reaction of a Cys sulfhydryl with various ß-lactams in the absence of the enzyme environment in order to compare the intrinsic reactivity of drugs belonging to the penam, cephem, and carbapenem classes. For this purpose, we synthesized cyclic Cys-Asn (cCys-Asn) to generate a soluble molecule with a sulfhydryl closely mimicking a cysteine in a polypeptide chain, thereby avoiding free reactive amino and carboxyl groups. Computational studies identified a thermodynamically favored pathway involving a concerted rupture of the ß-lactam amide bond and formation of an amine anion. Energy barriers indicated that the drug reactivity was the highest for nonmethylated carbapenems, intermediate for methylated carbapenems and cephems, and the lowest for penams. Electron-withdrawing groups were key reactivity determinants by enabling delocalization of the negative charge of the amine anion. Acylation rates of cCys-Asn determined by spectrophotometry revealed the same order in the reactivity of ß-lactams. We concluded that the rate of Ldtfm acylation is largely determined by the ß-lactam reactivity with one exception, as the enzyme catalytic pocket fully compensated for the detrimental effect of carbapenem methylation.


Subject(s)
Anti-Bacterial Agents/metabolism , Carbapenems/metabolism , Cysteine/chemistry , Enterococcus faecium/enzymology , Peptidyl Transferases/metabolism , Acylation , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Catalytic Domain/physiology , Enterococcus faecium/metabolism , Methylation , Peptidoglycan/chemistry
6.
J Struct Biol ; 206(1): 66-72, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30031884

ABSTRACT

The bacterial cell wall is composed of the peptidoglycan (PG), a large polymer that maintains the integrity of the bacterial cell. Due to its multi-gigadalton size, heterogeneity, and dynamics, atomic-resolution studies are inherently complex. Solid-state NMR is an important technique to gain insight into its structure, dynamics and interactions. Here, we explore the possibilities to study the PG with ultra-fast (100 kHz) magic-angle spinning NMR. We demonstrate that highly resolved spectra can be obtained, and show strategies to obtain site-specific resonance assignments and distance information. We also explore the use of proton-proton correlation experiments, thus opening the way for NMR studies of intact cell walls without the need for isotope labeling.


Subject(s)
Bacillus subtilis/metabolism , Bacterial Proteins/analysis , Cell Wall/chemistry , Magnetic Resonance Spectroscopy/methods , Peptidoglycan/analysis , Molecular Structure , Protons
7.
Mol Microbiol ; 110(3): 335-356, 2018 11.
Article in English | MEDLINE | ID: mdl-30044025

ABSTRACT

Bacteria surround their cytoplasmic membrane with an essential, stress-bearing peptidoglycan (PG) layer consisting of glycan chains linked by short peptides into a mesh-like structure. Growing and dividing cells expand their PG layer using inner-membrane anchored PG synthases, including Penicillin-binding proteins (PBPs), which participate in dynamic protein complexes to facilitate cell wall growth. In Escherichia coli, and presumably other Gram-negative bacteria, growth of the mainly single layered PG is regulated by outer membrane-anchored lipoproteins. The lipoprotein LpoB is required to activate PBP1B, which is a major, bi-functional PG synthase with glycan chain polymerising (glycosyltransferase) and peptide cross-linking (transpeptidase) activities. In this work we show how the binding of LpoB to the regulatory UB2H domain of PBP1B activates both activities. Binding induces structural changes in the UB2H domain, which transduce to the two catalytic domains by distinct allosteric pathways. We also show how an additional regulator protein, CpoB, is able to selectively modulate the TPase activation by LpoB without interfering with GTase activation.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Penicillin-Binding Proteins/chemistry , Penicillin-Binding Proteins/metabolism , Peptidoglycan Glycosyltransferase/chemistry , Peptidoglycan Glycosyltransferase/metabolism , Peptidoglycan/biosynthesis , Serine-Type D-Ala-D-Ala Carboxypeptidase/chemistry , Serine-Type D-Ala-D-Ala Carboxypeptidase/metabolism , Allosteric Regulation , Membrane Proteins/metabolism , Protein Binding , Protein Conformation
8.
Front Microbiol ; 9: 3223, 2018.
Article in English | MEDLINE | ID: mdl-30713527

ABSTRACT

Peptidoglycan (PG) is an essential component of the cell envelope, maintaining bacterial cell shape and protecting it from bursting due to turgor pressure. The monoderm bacterium Staphylococcus aureus has a highly cross-linked PG, with ~90% of peptide stems participating in DD-cross-links and up to 15 peptide stems connected with each other. These cross-links are formed in transpeptidation reactions catalyzed by penicillin-binding proteins (PBPs) of classes A and B. Most S. aureus strains have three housekeeping PBPs with this function (PBP1, PBP2, and PBP3) but MRSA strains have acquired a third class B PBP, PBP2a, which is encoded by the mecA gene and required for the expression of high-level resistance to ß-lactams. Another housekeeping PBP of S. aureus is PBP4, which belongs to the class C PBPs, and hence would be expected to have PG hydrolase (DD-carboxypeptidase or DD-endopeptidase) activity. However, previous works showed that, unexpectedly, PBP4 has transpeptidase activity that significantly contributes to both the high level of cross-linking in the PG of S. aureus and to the low level of ß-lactam resistance in the absence of PBP2a. To gain insights into this unusual activity of PBP4, we studied by NMR spectroscopy its interaction in vitro with different substrates, including intact peptidoglycan, synthetic peptide stems, muropeptides, and long glycan chains with uncross-linked peptide stems. PBP4 showed no affinity for the complex, intact peptidoglycan or the smallest isolated peptide stems. Transpeptidase activity of PBP4 was verified with the disaccharide peptide subunits (muropeptides) in vitro, producing cyclic dimer and multimer products; these assays also showed a designed PBP4(S75C) nucleophile mutant to be inactive. Using this inactive but structurally highly similar variant, liquid-state NMR identified two interaction surfaces in close proximity to the central nucleophile position that can accommodate the potential donor and acceptor stems for the transpeptidation reaction. A PBP4:muropeptide model structure was built from these experimental restraints, which provides new mechanistic insights into mecA independent resistance to ß-lactams in S. aureus.

9.
Sci Rep ; 7(1): 9715, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28852068

ABSTRACT

Transport of lipopolysaccharides (LPS) to the surface of the outer membrane is essential for viability of Gram-negative bacteria. Periplasmic LptC and LptA proteins of the LPS transport system (Lpt) are responsible for LPS transfer between the Lpt inner and outer membrane complexes. Here, using a monomeric E. coli LptA mutant, we first show in vivo that a stable LptA oligomeric form is not strictly essential for bacteria. The LptC-LptA complex was characterized by a combination of SAXS and NMR methods and a low resolution model of the complex was determined. We were then able to observe interaction of LPS with LptC, the monomeric LptA mutant as well as with the LptC-LptA complex. A LptC-LPS complex was built based on NMR data in which the lipid moiety of the LPS is buried at the interface of the two ß-jellyrolls of the LptC dimer. The selectivity of LPS for this intermolecular surface and the observation of such cavities at homo- or heteromolecular interfaces in LptC and LptA suggests that intermolecular sites are essential for binding LPS during its transport.


Subject(s)
Lipopolysaccharides/metabolism , Periplasmic Proteins/metabolism , Biological Transport , Intracellular Space , Magnetic Resonance Spectroscopy , Models, Biological , Models, Molecular , Molecular Conformation , Protein Binding , Structure-Activity Relationship
10.
Nat Commun ; 7: 12071, 2016 06 27.
Article in English | MEDLINE | ID: mdl-27346279

ABSTRACT

Accurate placement of the bacterial division site is a prerequisite for the generation of two viable and identical daughter cells. In Streptococcus pneumoniae, the positive regulatory mechanism involving the membrane protein MapZ positions precisely the conserved cell division protein FtsZ at the cell centre. Here we characterize the structure of the extracellular domain of MapZ and show that it displays a bi-modular structure composed of two subdomains separated by a flexible serine-rich linker. We further demonstrate in vivo that the N-terminal subdomain serves as a pedestal for the C-terminal subdomain, which determines the ability of MapZ to mark the division site. The C-terminal subdomain displays a patch of conserved amino acids and we show that this patch defines a structural motif crucial for MapZ function. Altogether, this structure-function analysis of MapZ provides the first molecular characterization of a positive regulatory process of bacterial cell division.


Subject(s)
Bacterial Proteins/metabolism , Streptococcus pneumoniae/metabolism , Structure-Activity Relationship , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cell Division/physiology , Cytokinesis , Cytoskeletal Proteins/metabolism , Gene Expression Regulation, Bacterial , Models, Molecular , Protein Conformation , Protein Domains
11.
J Phys Chem B ; 120(21): 4767-81, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27196382

ABSTRACT

The l,d-transpeptidases, Ldts, catalyze peptidoglycan cross-linking in ß-lactam-resistant mutant strains of several bacteria, including Enterococcus faecium and Mycobacterium tuberculosis. Although unrelated to the essential d,d-transpeptidases, which are inactivated by the ß-lactam antibiotics, they are nevertheless inhibited by the carbapenem antibiotics, making them potentially useful targets in the treatment of some important diseases. In this work, we have investigated the acylation mechanism of the Ldt from E. faecium by the carbapenem, ertapenem, using computational techniques. We have employed molecular dynamics simulations in conjunction with QC/MM hybrid potential calculations to map out possible reaction paths. We have focused on determining the following: (i) the protonation state of the nucleophilic cysteine of the enzyme when it attacks; (ii) whether nucleophilic attack and ß-lactam ring-opening are concerted or stepwise, the latter occurring via an oxyanion intermediate; and (iii) the identities of the proton acceptors at the beginning and end of the reaction. Overall, we note that there is considerable plasticity in the mechanisms, owing to the significant flexibility of the enzyme, but find that the preferred pathways are ones in which nucleophilic attack of cysteine thiolate is concerted with ß-lactam ring-opening.


Subject(s)
Bacterial Proteins/metabolism , Carbapenems/metabolism , Enterococcus faecium/enzymology , Peptidyl Transferases/metabolism , Acylation , Bacterial Proteins/chemistry , Carbapenems/chemistry , Molecular Dynamics Simulation , Peptidyl Transferases/chemistry , Quantum Theory
12.
Inorg Chem ; 55(3): 1011-3, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26771438

ABSTRACT

New gallium(III) and iron(III) endohedral complexes were obtained from a hemicryptophane ligand bearing suitable binding sites for octahedral metal coordination. The solid-state structures of the free host and of the complexes were determined by single-crystal X-ray diffraction analysis. The metal ion is linked to the hydrazone nitrogen and the phenolate oxygen atoms, yielding a distorted octahedral geometry around the encapsulated metal. The two isomorphous structures of the metal complexes reveal the exclusive formation of PΔ/MΛ enantiomeric pairs.

13.
Mol Microbiol ; 98(1): 90-100, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26101813

ABSTRACT

In Mycobacterium tuberculosis and ampicillin-resistant mutants of Enterococcus faecium, the classical target of ß-lactam antibiotics is bypassed by L,D-transpeptidases that form unusual 3 → 3 peptidoglycan cross-links. ß-lactams of the carbapenem class, such as ertapenem, are mimics of the acyl donor substrate and inactivate l,d-transpeptidases by acylation of their catalytic cysteine. We have blocked the acyl donor site of E. faecium L,D-transpeptidase Ldt(fm) by ertapenem and identified the acyl acceptor site based on analyses of chemical shift perturbations induced by binding of peptidoglycan fragments to the resulting acylenzyme. An nuclear magnetic resonance (NMR)-driven docking structure of the complex revealed key hydrogen interactions between the acyl acceptor and Ldt(fm) that were evaluated by site-directed mutagenesis and development of a cross-linking assay. Three residues are reported as critical for stabilisation of the acceptor in the Ldt(fm) active site and proper orientation of the nucleophilic nitrogen for the attack of the acylenzyme carbonyl. Identification of the catalytic pocket dedicated to the acceptor substrate opens new perspectives for the design of inhibitors with an original mode of action that could act alone or in synergy with ß-lactams.


Subject(s)
Bacterial Proteins/metabolism , Enterococcus faecium/enzymology , Peptidyl Transferases/chemistry , Peptidyl Transferases/metabolism , Acylation , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Catalytic Domain , Enterococcus faecium/drug effects , Enterococcus faecium/genetics , Ertapenem , Models, Molecular , Molecular Docking Simulation , Mutagenesis, Site-Directed , Peptidoglycan/chemistry , Peptidoglycan/metabolism , Peptidyl Transferases/genetics , Substrate Specificity , beta-Lactams/pharmacology
14.
Biomol NMR Assign ; 9(1): 65-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24493340

ABSTRACT

The peptidoglycan is a major component of the bacterial cell wall and is essential to maintain cellular integrity and cell shape. Penicillin-Binding Proteins (PBPs) catalyze the final biosynthetic steps of peptidoglycan synthesis from lipid II precursor and are the main targets of ß-lactam antibiotics. The molecular details of peptidoglycan growth and its regulation are poorly understood. Presumably, PBPs are active in peptidoglycan synthesizing multi-enzyme complexes that are controlled from inside the cell by cytoskeletal elements. Recently, two outer-membrane lipoproteins, LpoA and LpoB, were shown to be required in Escherichia coli for the function of the main peptidoglycan synthases, PBP1A and PBP1B, by stimulating their transpeptidase activity. However, the mechanism of PBP-activation by Lpo proteins is not known, and the Lpo proteins await structural characterization at atomic resolution. Here we present the backbone and side-chain (1)H, (13)C, (15)N NMR assignments of the N-terminal domain of LpoA from E. coli for structural and functional studies.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli , Lipoproteins/chemistry , Nuclear Magnetic Resonance, Biomolecular , Amino Acid Sequence , Bacterial Outer Membrane Proteins/drug effects , Escherichia coli Proteins/drug effects , Lipoproteins/drug effects , Molecular Sequence Data , Protein Structure, Tertiary
15.
Biomol NMR Assign ; 9(1): 123-7, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24691651

ABSTRACT

Bacteria surround their cytoplasmic membrane with the essential heteropolymer peptidoglycan (PG), which is made of glycan chains cross-linked by short peptides, to maintain osmotic stability and cell shape. PG is assembled from lipid II precursor by glycosyltransferase and transpeptidase reactions catalyzed by PG synthases, which are anchored to the cytoplasmic membrane and are controlled from inside the cell by cytoskeletal elements. Recently, two lipoproteins, LpoA and LpoB, were shown to be required in Escherichia coli for activating the main peptidoglycan synthases, Penicillin-Binding Proteins 1A and 1B, from the outer membrane. Here we present the backbone and side-chain assignment of the (1)H, (13)C and (15)N resonances of LpoB from E. coli. We also provide evidence for a two-domain organization of LpoB and a largely disordered, 64 amino acid-long N-terminal domain.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Cell Membrane/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli/cytology , Nuclear Magnetic Resonance, Biomolecular , Bacterial Outer Membrane Proteins/metabolism , Escherichia coli Proteins/metabolism , Protein Structure, Tertiary , Solutions
16.
J Am Chem Soc ; 136(51): 17852-60, 2014 Dec 24.
Article in English | MEDLINE | ID: mdl-25429710

ABSTRACT

The maintenance of bacterial cell shape and integrity is largely attributed to peptidoglycan, a highly cross-linked biopolymer. The transpeptidases that perform this cross-linking are important targets for antibiotics. Despite this biomedical importance, to date no structure of a protein in complex with an intact bacterial peptidoglycan has been resolved, primarily due to the large size and flexibility of peptidoglycan sacculi. Here we use solid-state NMR spectroscopy to derive for the first time an atomic model of an l,d-transpeptidase from Bacillus subtilis bound to its natural substrate, the intact B. subtilis peptidoglycan. Importantly, the model obtained from protein chemical shift perturbation data shows that both domains-the catalytic domain as well as the proposed peptidoglycan recognition domain-are important for the interaction and reveals a novel binding motif that involves residues outside of the classical enzymatic pocket. Experiments on mutants and truncated protein constructs independently confirm the binding site and the implication of both domains. Through measurements of dipolar-coupling derived order parameters of bond motion we show that protein binding reduces the flexibility of peptidoglycan. This first report of an atomic model of a protein-peptidoglycan complex paves the way for the design of new antibiotic drugs targeting l,d-transpeptidases. The strategy developed here can be extended to the study of a large variety of enzymes involved in peptidoglycan morphogenesis.


Subject(s)
Bacillus subtilis/enzymology , Cell Wall/enzymology , Models, Molecular , Peptidoglycan/metabolism , Peptidyl Transferases/chemistry , Peptidyl Transferases/metabolism , Catalytic Domain , Mutation , Peptidyl Transferases/genetics , Protein Binding
17.
Structure ; 22(7): 1047-54, 2014 Jul 08.
Article in English | MEDLINE | ID: mdl-24954617

ABSTRACT

The bacterial cell envelope contains the stress-bearing peptidoglycan layer, which is enlarged during cell growth and division by membrane-anchored synthases guided by cytoskeletal elements. In Escherichia coli, the major peptidoglycan synthase PBP1A requires stimulation by the outer-membrane-anchored lipoprotein LpoA. Whereas the C-terminal domain of LpoA interacts with PBP1A to stimulate its peptide crosslinking activity, little is known about the role of the N-terminal domain. Herein we report its NMR structure, which adopts an all-α-helical fold comprising a series of helix-turn-helix tetratricopeptide-repeat (TPR)-like motifs. NMR spectroscopy of full-length LpoA revealed two extended flexible regions in the C-terminal domain and limited, if any, flexibility between the N- and C-terminal domains. Analytical ultracentrifugation and small-angle X-ray scattering results are consistent with LpoA adopting an elongated shape, with dimensions sufficient to span from the outer membrane through the periplasm to interact with the peptidoglycan synthase PBP1A.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Escherichia coli Proteins/chemistry , Lipoproteins/chemistry , Penicillin-Binding Proteins/chemistry , Peptidoglycan/biosynthesis , Amino Acid Sequence , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Hydrogen-Ion Concentration , Lipoproteins/genetics , Lipoproteins/metabolism , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Sequence Data , Penicillin-Binding Proteins/metabolism , Periplasm/metabolism , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Scattering, Small Angle , Sequence Homology, Amino Acid , Temperature , X-Ray Diffraction
18.
Proc Natl Acad Sci U S A ; 111(22): 8197-202, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24821816

ABSTRACT

Bacteria surround their cytoplasmic membrane with an essential, stress-bearing peptidoglycan (PG) layer. Growing and dividing cells expand their PG layer by using membrane-anchored PG synthases, which are guided by dynamic cytoskeletal elements. In Escherichia coli, growth of the mainly single-layered PG is also regulated by outer membrane-anchored lipoproteins. The lipoprotein LpoB is required for the activation of penicillin-binding protein (PBP) 1B, which is a major, bifunctional PG synthase with glycan chain polymerizing (glycosyltransferase) and peptide cross-linking (transpeptidase) activities. Here, we report the structure of LpoB, determined by NMR spectroscopy, showing an N-terminal, 54-aa-long flexible stretch followed by a globular domain with similarity to the N-terminal domain of the prevalent periplasmic protein TolB. We have identified the interaction interface between the globular domain of LpoB and the noncatalytic UvrB domain 2 homolog domain of PBP1B and modeled the complex. Amino acid exchanges within this interface weaken the PBP1B-LpoB interaction, decrease the PBP1B stimulation in vitro, and impair its function in vivo. On the contrary, the N-terminal flexible stretch of LpoB is required to stimulate PBP1B in vivo, but is dispensable in vitro. This supports a model in which LpoB spans the periplasm to interact with PBP1B and stimulate PG synthesis.


Subject(s)
Apolipoproteins B/metabolism , Bacterial Outer Membrane Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Penicillin-Binding Proteins/metabolism , Peptidoglycan Glycosyltransferase/metabolism , Serine-Type D-Ala-D-Ala Carboxypeptidase/metabolism , Apolipoproteins B/chemistry , Bacterial Outer Membrane Proteins/chemistry , Escherichia coli Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular , Penicillin-Binding Proteins/chemistry , Peptidoglycan/biosynthesis , Peptidoglycan Glycosyltransferase/chemistry , Periplasm/metabolism , Protein Interaction Domains and Motifs , Protein Structure, Tertiary , Serine-Type D-Ala-D-Ala Carboxypeptidase/chemistry
19.
Biomol NMR Assign ; 8(2): 339-43, 2014 Oct.
Article in English | MEDLINE | ID: mdl-23907322

ABSTRACT

Penicillin-binding proteins were long considered as the only peptidoglycan cross-linking enzymes and one of the main targets of ß-lactam antibiotics. A new class of transpeptidases, the L,D-transpeptidases, has emerged in the last decade. In most Gram-negative and Gram-positive bacteria, these enzymes generally have nonessential roles in peptidoglycan synthesis. In some clostridiae and mycobacteria, such as Mycobacterium tuberculosis, they are nevertheless responsible for the major peptidoglycan cross-linking pathway. L,D-Transpeptidases are thus considered as appealing new targets for the development of innovative therapeutic approaches. Carbapenems are currently investigated in this perspective as they are active on extensively drug-resistant M. tuberculosis and represent the only ß-lactam class inhibiting L,D-transpeptidases. The molecular basis of the enzyme selectivity for carbapenems nevertheless remains an open question. Here we present the backbone and side-chain (1)H, (13)C, (15)N NMR assignments of the catalytic domain of Enterococcus faecium L,D-transpeptidase before and after acylation with the carbapenem ertapenem, as a prerequisite for further structural and functional studies.


Subject(s)
Cysteine/metabolism , Enterococcus faecium/enzymology , Nuclear Magnetic Resonance, Biomolecular , Peptidyl Transferases/chemistry , Peptidyl Transferases/metabolism , beta-Lactams/metabolism , Acylation/drug effects , Amino Acid Sequence , Catalytic Domain , Ertapenem , Molecular Sequence Data , beta-Lactams/pharmacology
20.
PLoS One ; 8(11): e81168, 2013.
Article in English | MEDLINE | ID: mdl-24312273

ABSTRACT

Zinc (Zn(2+)) homeostasis is critical for pathogen host colonization and invasion. Polyhistidine triad (Pht) proteins, located at the surface of various streptococci, have been proposed to be involved in Zn(2+) homeostasis. The phtD gene, coding for a Zn(2+)-binding protein, is organized in an operon with adcAII coding for the extracellular part of a Zn(2+) transporter. In the present work, we investigate the relationship between PhtD and AdcAII using biochemical and structural biology approaches. Immuno-precipitation experiments on purified membranes of Streptococcus pneumoniae (S. pneumoniae) demonstrate that native PhtD and AdcAII interact in vivo confirming our previous in vitro observations. NMR was used to demonstrate Zn(2+) transfer from the Zn(2+)-bound form of a 137 amino acid N-terminal domain of PhtD (t-PhtD) to AdcAII. The high resolution NMR structure of t-PhtD shows that Zn(2+) is bound in a tetrahedral site by histidines 83, 86, and 88 as well as by glutamate 63. Comparison of the NMR parameters measured for apo- and Zn(2+)-t-PhtD shows that the loss of Zn(2+) leads to a diminished helical propensity at the C-terminus and increases the local dynamics and overall molecular volume. Structural comparison with the crystal structure of a 55-long fragment of PhtA suggests that Pht proteins are built from short repetitive units formed by three ß-strands containing the conserved HxxHxH motif. Taken together, these results support a role for S. pneumoniae PhtD as a Zn(2+) scavenger for later release to the surface transporter AdcAII, leading to Zn(2+) uptake.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Hydrolases/chemistry , Hydrolases/metabolism , Streptococcus pneumoniae/metabolism , Zinc/metabolism , Amino Acid Sequence , Apoproteins/metabolism , Binding Sites , Biological Transport , Models, Molecular , Molecular Sequence Data , Protein Structure, Secondary , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...