Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 19(5): e1010989, 2023 05.
Article in English | MEDLINE | ID: mdl-37130121

ABSTRACT

Animals rely on different decision strategies when faced with ambiguous or uncertain cues. Depending on the context, decisions may be biased towards events that were most frequently experienced in the past, or be more explorative. A particular type of decision making central to cognition is sequential memory recall in response to ambiguous cues. A previously developed spiking neuronal network implementation of sequence prediction and recall learns complex, high-order sequences in an unsupervised manner by local, biologically inspired plasticity rules. In response to an ambiguous cue, the model deterministically recalls the sequence shown most frequently during training. Here, we present an extension of the model enabling a range of different decision strategies. In this model, explorative behavior is generated by supplying neurons with noise. As the model relies on population encoding, uncorrelated noise averages out, and the recall dynamics remain effectively deterministic. In the presence of locally correlated noise, the averaging effect is avoided without impairing the model performance, and without the need for large noise amplitudes. We investigate two forms of correlated noise occurring in nature: shared synaptic background inputs, and random locking of the stimulus to spatiotemporal oscillations in the network activity. Depending on the noise characteristics, the network adopts various recall strategies. This study thereby provides potential mechanisms explaining how the statistics of learned sequences affect decision making, and how decision strategies can be adjusted after learning.


Subject(s)
Neural Networks, Computer , Neurons , Animals , Neurons/physiology , Learning/physiology , Memory/physiology , Mental Recall , Models, Neurological , Neuronal Plasticity/physiology , Action Potentials/physiology
2.
Front Integr Neurosci ; 16: 974177, 2022.
Article in English | MEDLINE | ID: mdl-36310714

ABSTRACT

Learning and replaying spatiotemporal sequences are fundamental computations performed by the brain and specifically the neocortex. These features are critical for a wide variety of cognitive functions, including sensory perception and the execution of motor and language skills. Although several computational models demonstrate this capability, many are either hard to reconcile with biological findings or have limited functionality. To address this gap, a recent study proposed a biologically plausible model based on a spiking recurrent neural network supplemented with read-out neurons. After learning, the recurrent network develops precise switching dynamics by successively activating and deactivating small groups of neurons. The read-out neurons are trained to respond to particular groups and can thereby reproduce the learned sequence. For the model to serve as the basis for further research, it is important to determine its replicability. In this Brief Report, we give a detailed description of the model and identify missing details, inconsistencies or errors in or between the original paper and its reference implementation. We re-implement the full model in the neural simulator NEST in conjunction with the NESTML modeling language and confirm the main findings of the original work.

3.
PLoS Comput Biol ; 18(6): e1010233, 2022 06.
Article in English | MEDLINE | ID: mdl-35727857

ABSTRACT

Sequence learning, prediction and replay have been proposed to constitute the universal computations performed by the neocortex. The Hierarchical Temporal Memory (HTM) algorithm realizes these forms of computation. It learns sequences in an unsupervised and continuous manner using local learning rules, permits a context specific prediction of future sequence elements, and generates mismatch signals in case the predictions are not met. While the HTM algorithm accounts for a number of biological features such as topographic receptive fields, nonlinear dendritic processing, and sparse connectivity, it is based on abstract discrete-time neuron and synapse dynamics, as well as on plasticity mechanisms that can only partly be related to known biological mechanisms. Here, we devise a continuous-time implementation of the temporal-memory (TM) component of the HTM algorithm, which is based on a recurrent network of spiking neurons with biophysically interpretable variables and parameters. The model learns high-order sequences by means of a structural Hebbian synaptic plasticity mechanism supplemented with a rate-based homeostatic control. In combination with nonlinear dendritic input integration and local inhibitory feedback, this type of plasticity leads to the dynamic self-organization of narrow sequence-specific subnetworks. These subnetworks provide the substrate for a faithful propagation of sparse, synchronous activity, and, thereby, for a robust, context specific prediction of future sequence elements as well as for the autonomous replay of previously learned sequences. By strengthening the link to biology, our implementation facilitates the evaluation of the TM hypothesis based on experimentally accessible quantities. The continuous-time implementation of the TM algorithm permits, in particular, an investigation of the role of sequence timing for sequence learning, prediction and replay. We demonstrate this aspect by studying the effect of the sequence speed on the sequence learning performance and on the speed of autonomous sequence replay.


Subject(s)
Models, Neurological , Neural Networks, Computer , Learning/physiology , Neuronal Plasticity/physiology , Neurons/physiology , Synapses/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...