Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cytometry A ; 101(7): 577-587, 2022 07.
Article in English | MEDLINE | ID: mdl-35324070

ABSTRACT

Cultivability, viability, and vitality make it possible to characterize the behavior of a cellular population. Vitality was assessed using the kinetic parameters of specific metabolisms depending on whether the strains were used, for example, for the acidification of lactic acid bacteria or for CO2 production in fermenting yeasts. However, these methods are time-consuming. We developed a cytometric descriptor based on the energy-dependent extrusion of carboxyfluorescein from cells, subsequent to carboxyfluorescein diacetate staining, and compared it to the measurements of metabolic activities of various bacteria and yeasts. For all of the microorganisms tested, the cytometric descriptor ΔFI15 was well correlated with the results of the metabolic measurements and, moreover, has the advantage of being easier and faster to use than metabolic methods. It can be very useful for evaluating the vitality of the starters before inoculation in industrial processes.


Subject(s)
Flow Cytometry , Flow Cytometry/methods , Kinetics , Staining and Labeling
2.
Int J Food Microbiol ; 197: 98-107, 2015 Mar 16.
Article in English | MEDLINE | ID: mdl-25589362

ABSTRACT

Thirty-six microorganisms (twenty-one bacteria, twelve yeasts and three fungi) were isolated from surface-ripened cheeses and subjected to in vitro digestive stress. The approach mimicked gastric and/or duodenal digestion. Lactobacillus rhamnosus GG, Escherichia coli Nissle 1917 and Saccharomyces boulardii were used as reference strains. We studied the microorganisms grown separately in culture medium and then included (or not) in a rennet gel. The microorganisms' immunomodulatory abilities were also assessed by profiling cytokine induction in human peripheral blood mononuclear cells (PBMCs). The loss of viability was less than 1 log CFU/mL for yeasts under all conditions. In contrast, Gram-negative bacteria survived gastric and/or duodenal stress well but most of the Gram-positive bacteria were more sensitive (especially to gastric stress). Inclusion of sensitive Gram-positive bacteria in rennet gel dramatically improved gastric survival, when compared with a non-included cultured (with a 4 log CFU/mL change in survival). However, the rennet gel did not protect the bacteria against duodenal stress. The PBMC cytokine assay tests showed that the response to yeasts was usually anti-inflammatory, whereas the response to bacteria varied from one strain to another.


Subject(s)
Cheese/microbiology , Digestion , Fungi/physiology , Gram-Negative Bacteria/physiology , Gram-Positive Bacteria/physiology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/microbiology , Cells, Cultured , Fungi/isolation & purification , Gram-Negative Bacteria/isolation & purification , Gram-Positive Bacteria/isolation & purification , Humans , In Vitro Techniques , Microbial Viability , Yeasts/isolation & purification , Yeasts/physiology
3.
Microb Biotechnol ; 8(2): 311-8, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24981007

ABSTRACT

Determinations of membrane fatty acid composition and fluidity were used together with acidification activity and viability measurements to characterize the physiological state after freezing of Lactobacillus buchneri R1102 and Bifidobacterium longum R0175 cells harvested in the exponential and stationary growth phases. For both strains, lower membrane fluidity was achieved in cells harvested in the stationary growth phase. This change was linked to a lower unsaturated-to-saturated fatty acid ratio for both strains and a higher cyclic-to-saturated fatty acid ratio for L. buchneri R1102 alone. These membrane properties were linked to survival and to maintenance of acidification activity of the cells after freezing, which differed according to the strain and the growth phase. Survival of B. longum R0175 was increased by 10% in cells with low membrane fluidity and high relative saturated fatty acid contents, without any change in acidification activity. Acidification activity was more degraded (70 min) in L. buchneri R1102 cells displaying low membrane fluidity and high saturated and cyclic fatty acid levels. Finally, this study showed that membrane modifications induced by the growth phase differed among bacterial strains in terms of composition. By lowering membrane fluidity, these modifications could be beneficial for survival of B. longum R0175 during the freezing process but detrimental for maintenance of acidification activity of L. buchneri R1102.


Subject(s)
Bifidobacterium/physiology , Cell Membrane/chemistry , Cell Membrane/physiology , Fatty Acids/analysis , Freezing , Lactobacillus/physiology , Membrane Fluidity/radiation effects , Bifidobacterium/radiation effects , Cell Membrane/radiation effects , Lactobacillus/radiation effects , Microbial Viability/drug effects
4.
PLoS One ; 9(10): e111138, 2014.
Article in English | MEDLINE | ID: mdl-25350121

ABSTRACT

Organisms that can withstand anhydrobiosis possess the unique ability to temporarily and reversibly suspend their metabolism for the periods when they live in a dehydrated state. However, the mechanisms underlying the cell's ability to tolerate dehydration are far from being fully understood. The objective of this study was to highlight, for the first time, the cellular damage to Yarrowia lipolytica as a result of dehydration induced by drying/rehydration and freezing/thawing. Cellular response was evaluated through cell cultivability determined by plate counts, esterase activity and membrane integrity assessed by flow cytometry, and the biochemical composition of cells as determined by FT-IR spectroscopy. The effects of the harvesting time (in the log or stationary phase) and of the addition of a protective molecule, trehalose, were investigated. All freshly harvested cells exhibited esterase activity and no alteration of membrane integrity. Cells freshly harvested in the stationary phase presented spectral contributions suggesting lower nucleic acid content and thicker cell walls, as well as longer lipid chains than cells harvested in the log phase. Moreover, it was found that drying/rehydration induced cell plasma membrane permeabilization, loss of esterase activity with concomitant protein denaturation, wall damage and oxidation of nucleic acids. Plasma membrane permeabilization and loss of esterase activity could be reduced by harvesting in the stationary phase and/or with trehalose addition. Protein denaturation and wall damage could be reduced by harvesting in the stationary phase. In addition, it was shown that measurements of loss of membrane integrity and preservation of esterase activity were suitable indicators of loss and preservation of cultivability, respectively. Conversely, no clear effect of freezing/thawing could be observed, probably because of the favorable operating conditions applied. These results give insights into Y. lipolytica mechanisms of cellular response to dehydration and provide a basis to better understand its ability to tolerate anhydrobiosis.


Subject(s)
Dehydration , Freeze Drying , Yarrowia/metabolism , Air , Cell Membrane/metabolism , Cell Wall/metabolism , Culture Media/chemistry , Flow Cytometry , Oxidative Stress , Permeability , Phosphates/chemistry , Spectroscopy, Fourier Transform Infrared , Temperature , Trehalose/chemistry , Yarrowia/physiology
5.
Waste Manag ; 32(12): 2258-65, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22922049

ABSTRACT

The goal of this study is to evaluate the impact of the inoculum to substrate ratio (I/S) on the anaerobic degradation potential of municipal solid waste (MSW). Reconstituted MSW samples were thus incubated under batch anaerobic conditions and inoculated with an increasing amount of inoculum originating from a mesophilic sludge digester. I/S tested values were 0 (no inoculum added), 0.015, 0.03, 0.06, 0.12, 0.25, 1, 2 and 4 (gVM(inoculum)/gVM(waste)). The results indicate that the apparent maximal rate of dissolved organic carbon accumulation is reached at I/S=0.12. Under this level, the hydrolysis process is limited by the concentration of biomass and can thus be described as first order kinetics phenomena with respect to biomass for I/S ratios below 0.12. The maximum methane production rate and the minimal latency are reached at a ratio of 2. In addition to that, both methane signature and ARISA show a shift in the methanogenic populations from hydrogenotrophic to acetoclastic.


Subject(s)
Refuse Disposal/methods , Anaerobiosis , Bioreactors , Gases , Kinetics , Time Factors
6.
Appl Environ Microbiol ; 76(5): 1367-74, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20061456

ABSTRACT

Cheese is a complex and dynamic microbial ecosystem characterized by the presence of a large variety of bacteria, yeasts, and molds. Some microorganisms, including species of lactobacilli or lactococci, are known to contribute to the organoleptic quality of cheeses, whereas the presence of other microorganisms may lead to spoilage or constitute a health risk. Staphylococcus aureus is recognized worldwide as an important food-borne pathogen, owing to the production of enterotoxins in food matrices. In order to study enterotoxin gene expression during cheese manufacture, we developed an efficient procedure to recover total RNA from cheese and applied a robust strategy to study gene expression by reverse transcription-quantitative PCR (RT-qPCR). This method yielded pure preparations of undegraded RNA suitable for RT-qPCR. To normalize RT-qPCR data, expression of 10 potential reference genes was investigated during S. aureus growth in milk and in cheese. The three most stably expressed reference genes during cheese manufacture were ftsZ, pta, and gyrB, and these were used as internal controls for RT-qPCR of the genes sea and sed, encoding staphylococcal enterotoxins A and D, respectively. Expression of these staphylococcal enterotoxin genes was monitored during the first 72 h of the cheese-making process, and mRNA data were correlated with enterotoxin production.


Subject(s)
Bacterial Toxins/biosynthesis , Cheese/microbiology , Enterotoxins/biosynthesis , Gene Expression , Staphylococcus aureus/genetics , Animals , Bacterial Toxins/genetics , Enterotoxins/genetics , Milk/microbiology , RNA, Bacterial/genetics , RNA, Bacterial/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction/methods
7.
Appl Environ Microbiol ; 75(13): 4374-81, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19429565

ABSTRACT

This study aims at better understanding the effects of fermentation pH and harvesting time on Lactobacillus bulgaricus CFL1 cellular state in order to improve knowledge of the dynamics of the physiological state and to better manage starter production. The Cinac system and multiparametric flow cytometry were used to characterize and compare the progress of the physiological events that occurred during pH 6 and pH 5 controlled cultures. Acidification activity, membrane damage, enzymatic activity, cellular depolarization, intracellular pH, and pH gradient were determined and compared during growing conditions. Strong differences in the time course of viability, membrane integrity, and acidification activity were displayed between pH 6 and pH 5 cultures. As a main result, the pH 5 control during fermentation allowed the cells to maintain a more robust physiological state, with high viability and stable acidification activity throughout growth, in opposition to a viability decrease and fluctuation of activity at pH 6. This result was mainly explained by differences in lactate concentration in the culture medium and in pH gradient value. The elevated content of the ionic lactate form at high pH values damaged membrane integrity that led to a viability decrease. In contrast, the high pH gradient observed throughout pH 5 cultures was associated with an increased energetic level that helped the cells maintain their physiological state. Such results may benefit industrial starter producers and fermented-product manufacturers by allowing them to better control the quality of their starters, before freezing or before using them for food fermentation.


Subject(s)
Culture Media/chemistry , Lactobacillus/physiology , Cell Membrane/physiology , Fermentation , Hydrogen-Ion Concentration , Industrial Microbiology , Lactic Acid/analysis , Microbial Viability , Time Factors
8.
Appl Microbiol Biotechnol ; 81(3): 559-70, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18800182

ABSTRACT

This study aimed at examining and comparing the relevance of various methods in order to discriminate different cellular states of Lactobacillus bulgaricus CFL1 and to improve knowledge on the dynamics of the cellular physiological state during growth and acidification. By using four fluorescent probes combined with multiparametric flow cytometry, membrane integrity, intracellular esterase activity, cellular vitality, membrane depolarization, and intracellular pH were quantified throughout fermentations. Results were compared and correlated with measurements of cultivability, acidification activity (Cinac system), and cellular ability to recover growth in fresh medium (Bioscreen system). The Cinac system and flow cytometry were relevant to distinguish different physiological states throughout growth. Lb. bulgaricus cells maintained their high viability, energetic state, membrane potential, and pH gradient in the late stationary phase, despite the gradual decrease of both cultivability and acidification activity. Viability and membrane integrity were maintained during acidification, at the expense of their cultivability and acidification activity. Finally, this study demonstrated that the physiological state during fermentation was strongly affected by intracellular pH and the pH gradient. The critical pHi of Lb. bulgaricus CFL1 was found to be equal to pH 5.8. Through linear relationships between dpH and cultivability and pHi and acidification activity, pHi and dpH well described the time course of metabolic activity, cultivability, and viability in a single analysis.


Subject(s)
Fermentation , Lactobacillus delbrueckii/metabolism , Acids/metabolism , Culture Media/metabolism , Flow Cytometry , Hydrogen-Ion Concentration , Kinetics , Lactobacillus delbrueckii/cytology , Lactobacillus delbrueckii/growth & development , Microbial Viability
9.
Int J Food Microbiol ; 125(3): 242-51, 2008 Jul 31.
Article in English | MEDLINE | ID: mdl-18511141

ABSTRACT

The essential oils (EOs) extracted from the aerial parts of cultivated Salvia officinalis L. and the berries of Schinus molle L. were analysed by gas chromatography-mass spectrometry (GC-MS) and 68 and 67 constituents were identified, respectively. The major constituents were 1,8-cineole (33.27%), beta-thujone (18.40%), alpha-thujone (13.45%), borneol (7.39%) in S. officinalis oil and alpha-phellandrene (35.86%), beta-phellandrene (29.3%), beta-pinene (15.68%), p-cymene (5.43%) and alpha-pinene (5.22%) in S. molle oil. In its second part, the present study was conducted to evaluate the in vitro antimicrobial activity of both studied EOs. For this purpose, paper disc-diffusion method and broth microdilution test were used. The disc-diffusion method showed significant zone of lysis against all the pathogens studied (gram-negative and gram-positive bacteria, yeast). These activities remained stable after six months, and decreased approximately by 20% after one year of storage of the EOs at 4 to 7 degrees C. On comparing the efficiency of both EOs, S. officinalis EO exhibited higher antibacterial activity against the majority of strains and especially against Candida albicans (two fold more active according to the inhibition zones values). The minimal inhibitory concentrations (MICs) were reported between 4.5 mg/ml and 72 mg/ml on nutrient broth. The particular chemotype of each EO may be involved in its specific antimicrobial behaviour. Furthermore, the inhibitory effect of these EOs were evaluated against two foodborne pathogens belonging to Salmonella genus, experimentally inoculated (10(3) CFU/g) in minced beef meat, which was mixed with different concentrations of the EO and stored at 4 to 7 degrees C for 15 days. Although the antibacterial activities of both EOs in minced beef meat were clearly evident, their addition had notable effects on the flavour and taste of the meat at concentrations more than 2% for S. molle and 1.5% for S. officinalis. One solution to the above-mentioned problem may be the use of combinations of different food preservation systems. In this context, each of the EOs has been used along with low water activity (addition of NaCl) in addition to low refrigeration temperatures. Results on the Salmonella growth showed that some combinations could be recommended to eliminate germs from minced raw beef. By using this method, a stable and, from a microbiological point of view, safe meat can be produced without substantial loss in sensory quality. Results obtained herein, may suggest that the EOs of S. officinalis and S. molle possess antimicrobial activity, and therefore, they can be used in biotechnological fields as natural preservative ingredients in food and/or pharmaceutical industry.


Subject(s)
Anacardiaceae/chemistry , Food Preservatives/pharmacology , Meat Products/microbiology , Oils, Volatile/pharmacology , Salmonella/drug effects , Salvia officinalis/chemistry , Animals , Cattle , Colony Count, Microbial , Dose-Response Relationship, Drug , Food Contamination/analysis , Food Contamination/prevention & control , Food Handling/methods , Food Microbiology , Food Preservation/methods , Gas Chromatography-Mass Spectrometry/methods , Humans , Microbial Sensitivity Tests , Salmonella/growth & development , Tunisia
10.
Cryobiology ; 55(1): 35-43, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17577587

ABSTRACT

Freezing is widely used for the long-term preservation of lactic acid bacteria, but often affects their viability and technological properties. Different methods are currently employed to determine bacterial cryotolerance, but they all require several hours or days before achieving results. The aim of this study was to establish the advantages of multiparametric flow cytometry by using two specific fluorescent probes to provide rapid assessment of the viability of four strains of Lactobacillus delbrueckii after freezing and during frozen storage. The relevance of carboxyfluorescein diacetate and propidium iodide to quantify bacterial viability was proven. When bacterial suspensions were simultaneously stained with these two fluorescent probes, three major subpopulations were identified: viable, dead and injured cells. The cryotolerance of four L. delbrueckii strains was evaluated by quantifying the relative percentages of each subpopulation before and after freezing, and throughout one month of storage at -80 degrees C. Results displayed significant differences in the resistance to freezing and frozen storage of the four strains when they were submitted to the same freezing and storage procedures. Whereas resistant strains displayed less than 10% of dead cells after one month of storage, one sensitive strain exhibited more than 50% of dead cells, together with 14% of stressed cells after freezing. Finally, this study proved that multiparametric flow cytometry was a convenient and rapid tool to evaluate the viability of lactic acid bacteria, and was well correlated with plate count results. Moreover, it made it possible to differentiate strains according to their susceptibility to freezing and frozen storage.


Subject(s)
Cryopreservation , Flow Cytometry , Freezing , Lactobacillus delbrueckii/physiology , Microbial Viability , Cell Count , Fluoresceins , Propidium
11.
Int J Food Microbiol ; 105(2): 97-109, 2005 Nov 25.
Article in English | MEDLINE | ID: mdl-16253365

ABSTRACT

Samples of the cheese yeast Rhodotorula glutinis were analysed during storage at +4 degrees C for cultivability, viability, vitality (metabolic activity), membrane potential state, intracellular pH, and carbohydrate content. The results have allowed to describe cellular events occurring during storage. The loss of vitality came with the decrease of carbohydrate content. The fall of trehalose content under a threshold value induced the deterioration of the membrane potential. Later, when all the cells were depolarised, the intracellular pH decreased and the cultivability dropped, whereas viable cells still decreased slowly. Then, it led to an intermediate physiological state similar to the viable but non-cultivable state. Finally, the fall of viability dropped. In this work, we have defined rapid methods relevant to describe the sequence of intracellular events in the cheese yeast R. glutinis during storage, and we applied them to understand the weak vitality without fall of viability of yeast samples. These methods might allow to rapidly test yeast sample quality before use and to predict, at the moment of the harvesting, the conservation of the yeast.


Subject(s)
Cheese/microbiology , Food Handling/methods , Food Preservation/methods , Rhodotorula/physiology , Carbohydrate Metabolism , Colony Count, Microbial , Flow Cytometry , Food Microbiology , Hydrogen-Ion Concentration , Membrane Potentials/physiology , Rhodotorula/growth & development , Rhodotorula/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...