Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 160: 107069, 2022 02.
Article in English | MEDLINE | ID: mdl-34974237

ABSTRACT

In recent decades, the possibility that use of mobile communicating devices, particularly wireless (mobile and cordless) phones, may increase brain tumour risk, has been a concern, particularly given the considerable increase in their use by young people. MOBI-Kids, a 14-country (Australia, Austria, Canada, France, Germany, Greece, India, Israel, Italy, Japan, Korea, the Netherlands, New Zealand, Spain) case-control study, was conducted to evaluate whether wireless phone use (and particularly resulting exposure to radiofrequency (RF) and extremely low frequency (ELF) electromagnetic fields (EMF)) increases risk of brain tumours in young people. Between 2010 and 2015, the study recruited 899 people with brain tumours aged 10 to 24 years old and 1,910 controls (operated for appendicitis) matched to the cases on date of diagnosis, study region and age. Participation rates were 72% for cases and 54% for controls. The mean ages of cases and controls were 16.5 and 16.6 years, respectively; 57% were males. The vast majority of study participants were wireless phones users, even in the youngest age group, and the study included substantial numbers of long-term (over 10 years) users: 22% overall, 51% in the 20-24-year-olds. Most tumours were of the neuroepithelial type (NBT; n = 671), mainly glioma. The odds ratios (OR) of NBT appeared to decrease with increasing time since start of use of wireless phones, cumulative number of calls and cumulative call time, particularly in the 15-19 years old age group. A decreasing trend in ORs was also observed with increasing estimated cumulative RF specific energy and ELF induced current density at the location of the tumour. Further analyses suggest that the large number of ORs below 1 in this study is unlikely to represent an unknown causal preventive effect of mobile phone exposure: they can be at least partially explained by differential recall by proxies and prodromal symptoms affecting phone use before diagnosis of the cases. We cannot rule out, however, residual confounding from sources we did not measure. Overall, our study provides no evidence of a causal association between wireless phone use and brain tumours in young people. However, the sources of bias summarised above prevent us from ruling out a small increased risk.


Subject(s)
Brain Neoplasms , Cell Phone , Glioma , Adolescent , Adult , Brain Neoplasms/epidemiology , Brain Neoplasms/etiology , Case-Control Studies , Child , Electromagnetic Fields/adverse effects , Glioma/etiology , Humans , Male , Radio Waves/adverse effects , Young Adult
3.
Paediatr Perinat Epidemiol ; 29(5): 453-61, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26174857

ABSTRACT

BACKGROUND: Despite the putative intrauterine origins of childhood (0-14 years) leukaemia, it is complex to assess the impact of perinatal factors on disease onset. Results on the association of maternal history of fetal loss (miscarriage/stillbirth) with specific disease subtypes in the subsequent offspring are in conflict. We sought to investigate whether miscarriage and stillbirth may have different impacts on the risk of acute lymphoblastic leukaemia (ALL) and of its main immunophenotypes (B-cell and T-cell ALL), as contrasted to acute myeloid leukaemia (AML). METHODS: One thousand ninety-nine ALL incidents (957 B-ALL) and 131 AML cases along with 1:1 age and gender-matched controls derived from the Nationwide Registry for Childhood Hematological Malignancies and Brain Tumors (1996-2013) were studied. Multivariable regression models were used to assess the roles of previous miscarriage(s) and stillbirth(s) on ALL (overall, B-, T-ALL) and AML, controlling for potential confounders. RESULTS: Statistically significant exposure and disease subtype-specific associations of previous miscarriage(s) exclusively with AML [odds ratio (OR) 1.67, 95% confidence interval (CI) 1.00, 2.81] and stillbirth(s) with ALL [OR 4.82, 95% CI 1.63, 14.24] and B-ALL particularly, emerged. CONCLUSION: Differential pathophysiological pathways pertaining to genetic polymorphisms or cytogenetic aberrations are likely to create hostile environments leading either to fetal loss or the development of specific leukaemia subtypes in subsequent offspring, notably distinct associations of maternal miscarriage history confined to AML and stillbirth history confined to ALL (specifically B-ALL). If confirmed and further supported by studies revealing underlying mechanisms, these results may shed light on the divergent leukemogenesis processes.


Subject(s)
Abortion, Spontaneous/epidemiology , Leukemia, Myeloid, Acute/mortality , Precursor Cell Lymphoblastic Leukemia-Lymphoma/epidemiology , Abortion, Spontaneous/genetics , Abortion, Spontaneous/immunology , Adolescent , Adult , Antigens, CD34/immunology , Case-Control Studies , Child , Child, Preschool , Female , Gene-Environment Interaction , Humans , Immunophenotyping , Infant , Infant, Newborn , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/immunology , Male , Odds Ratio , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Pregnancy , Risk Factors , Stillbirth
SELECTION OF CITATIONS
SEARCH DETAIL
...