Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(3): e0296740, 2024.
Article in English | MEDLINE | ID: mdl-38483954

ABSTRACT

Estimation of contact patterns is often based on questionnaires and time-use data. The results obtained using these methods have been used extensively over the years and recently to predict the spread of the COVID-19 pandemic. They have also been used to test the effectiveness of non-pharmaceutical measures such as social distance. The latter is integrated into epidemiological models by multiplying contact matrices by control functions. We present a novel method that allows the integration of social distancing and other scenarios such as panic. Our method is based on a modified social force model. The model is calibrated using data relating to the movements of individuals and their interactions such as desired walking velocities and interpersonal distances as well as demographic data. We used the framework to assess contact patterns in different social contexts in Morocco. The estimated matrices are extremely assortative and exhibit patterns similar to those observed in other studies including the POLYMOD project. Our findings suggest social distancing would reduce the numbers of contacts by 95%. Further, we estimated the effect of panic on contact patterns, which indicated an increase in the number of contacts of 11%. This approach could be an alternative to questionnaire-based methods in the study of non-pharmaceutical measures and other specific scenarios such as rush hours. It also provides a substitute for estimating children's contact patterns which are typically assessed through parental proxy reporting in surveys.


Subject(s)
COVID-19 , Pandemics , Child , Humans , Pandemics/prevention & control , Contact Tracing/methods , Morocco , COVID-19/epidemiology , COVID-19/prevention & control , Physical Distancing
2.
Front Public Health ; 11: 1188732, 2023.
Article in English | MEDLINE | ID: mdl-37575110

ABSTRACT

During infectious disease outbreaks, some infected individuals may spread the disease widely and amplify risks in the community. People whose daily activities bring them in close proximity to many others can unknowingly become superspreaders. The use of contact tracking based on social networks, GPS, or mobile tracking data can help to identify superspreaders and break the chain of transmission. We propose a model that aims at providing insight into risk factors of superspreading events. Here, we use a social force model to estimate the superspreading potential of individuals walking in a bidirectional corridor. First, we applied the model to identify parameters that favor exposure to an infectious person in scattered crowds. We find that low walking speed and high body mass both increase the expected number of close exposures. Panic events exacerbate the risks while social distancing reduces both the number and duration of close encounters. Further, in dense crowds, pedestrians interact more and cannot easily maintain the social distance between them. The number of exposures increases with the density of person in the corridor. The study of movements reveals that individuals walking toward the center of the corridor tend to rotate and zigzag more than those walking along the edges, and thus have higher risks of superspreading. The corridor model can be applied to designing risk reduction measures for specific high volume venues, including transit stations, stadiums, and schools.


Subject(s)
Communicable Diseases , Humans , Disease Outbreaks , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...