Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccine ; 36(31): 4657-4662, 2018 07 25.
Article in English | MEDLINE | ID: mdl-29960801

ABSTRACT

Respiratory syncytial virus (RSV) is a significant cause of bronchiolitis and pneumonia. Protection against RSV is associated with neutralizing antibodies against the fusion (F) and attachment (G) glycoproteins. Several RSV vaccine candidates are in development, but their immunogenicity is hard to compare due to the little-understood differences between multiple RSV neutralizing antibody assays used. Existing assays utilize primarily Vero or HEp-2 cells, but their ability to detect G-neutralizing antibodies or antibodies against specific RSV strains is unclear. In this work, we developed an RSV microneutralization assay (MNA) using unmodified RSV and immortalized cell line derived from human airway epithelial cells (A549). Performance of A549-, HEp-2- and Vero-based MNA was compared under the same assay conditions (fixed amount of virus and cells) with regards to detection of neutralizing antibodies against RSV A or B viruses, G-reactive neutralizing antibodies, and effect of complement. Our results indicate that A549 cells yield the highest MNA titers, particularly in the RSV A/A2 MNA, are least susceptible to complement-enhancing effect of neutralizing titer readout and are superior to Vero or HEp-2 MNA at recognizing G-reactive neutralizing antibodies when no complement is used. Vero cells, however, can be more consistent at recognizing neutralizing antibodies against multiple RSV strains. The choice of substrate cells thus affects the outcome of MNA, as some immortalized cells better support detection of broader range of neutralizing antibodies, while others facilitate detection of G-targeting neutralizing antibodies, a long-thought prerogative of primary airway epithelial cells.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cross Reactions , Neutralization Tests/methods , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/immunology , A549 Cells , Animals , Chlorocebus aethiops , HeLa Cells , Humans , Sensitivity and Specificity , Vero Cells
2.
Antivir Chem Chemother ; 26: 2040206618770518, 2018.
Article in English | MEDLINE | ID: mdl-29768937

ABSTRACT

Respiratory syncytial virus is the leading cause of pneumonia and bronchiolitis in infants and is a serious health risk for elderly and immunocompromised individuals. No vaccine has yet been approved to prevent respiratory syncytial virus infection and the only available treatment is immunoprophylaxis of severe respiratory syncytial virus disease in high-risk infants with Palivizumab (Synagis®). The development of respiratory syncytial virus vaccine has been hampered by the phenomenon of enhanced respiratory syncytial virus disease observed during trials of a formalin-inactivated respiratory syncytial virus in 1960s. A search for effective respiratory syncytial virus therapeutics has been complicated by the fact that some of the most advanced respiratory syncytial virus antivirals, while highly effective in a prophylactic setting, had not demonstrated clinical efficacy when given after infection. A number of respiratory syncytial virus vaccines and antivirals are currently under development, including several vaccines proposed for maternal immunization. The cotton rat Sigmodon hispidus is an animal model of respiratory syncytial virus infection with demonstrated translational value. Special cohort scenarios, such as infection under conditions of immunosuppression and maternal immunization have been modeled in the cotton rat and are summarized here. In this review, we focus on the recent use of the cotton rat model for testing respiratory syncytial virus vaccine and therapeutic candidates in preclinical setting, including the use of special cohort models. An overview of published studies spanning the period of the last three years is provided. The emphasis, where possible, is made on candidates in the latest stages of preclinical development or currently in clinical trials.


Subject(s)
Antiviral Agents/pharmacology , Disease Models, Animal , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Viruses/drug effects , Respiratory Syncytial Viruses/immunology , Sigmodontinae/virology , Animals , Antiviral Agents/chemistry , Microbial Sensitivity Tests , Molecular Structure , Rats , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Vaccines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...