Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Science ; 384(6692): eadk6200, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38574174

ABSTRACT

Males and females exhibit profound differences in immune responses and disease susceptibility. However, the factors responsible for sex differences in tissue immunity remain poorly understood. Here, we uncovered a dominant role for type 2 innate lymphoid cells (ILC2s) in shaping sexual immune dimorphism within the skin. Mechanistically, negative regulation of ILC2s by androgens leads to a reduction in dendritic cell accumulation and activation in males, along with reduced tissue immunity. Collectively, our results reveal a role for the androgen-ILC2-dendritic cell axis in controlling sexual immune dimorphism. Moreover, this work proposes that tissue immune set points are defined by the dual action of sex hormones and the microbiota, with sex hormones controlling the strength of local immunity and microbiota calibrating its tone.


Subject(s)
Androgens , Dendritic Cells , Immunity, Innate , Lymphocytes , Sex Characteristics , Skin , Female , Male , Androgens/metabolism , Dendritic Cells/immunology , Gonadal Steroid Hormones/metabolism , Lymphocytes/immunology , Skin/immunology , Animals , Mice , Mice, Inbred C57BL , Microbiota
2.
Immunity ; 57(5): 1019-1036.e9, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38677292

ABSTRACT

Group 3 innate lymphoid cells (ILC3) are the major subset of gut-resident ILC with essential roles in infections and tissue repair, but how they adapt to the gut environment to maintain tissue residency is unclear. We report that Tox2 is critical for gut ILC3 maintenance and function. Gut ILC3 highly expressed Tox2, and depletion of Tox2 markedly decreased ILC3 in gut but not at central sites, resulting in defective control of Citrobacter rodentium infection. Single-cell transcriptional profiling revealed decreased expression of Hexokinase-2 in Tox2-deficient gut ILC3. Consistent with the requirement for hexokinases in glycolysis, Tox2-/- ILC3 displayed decreased ability to utilize glycolysis for protein translation. Ectopic expression of Hexokinase-2 rescued Tox2-/- gut ILC3 defects. Hypoxia and interleukin (IL)-17A each induced Tox2 expression in ILC3, suggesting a mechanism by which ILC3 adjusts to fluctuating environments by programming glycolytic metabolism. Our results reveal the requirement for Tox2 to support the metabolic adaptation of ILC3 within the gastrointestinal tract.


Subject(s)
Citrobacter rodentium , Enterobacteriaceae Infections , Glycolysis , Immunity, Innate , Lymphocytes , Mice, Knockout , Animals , Mice , Citrobacter rodentium/immunology , Enterobacteriaceae Infections/immunology , Lymphocytes/immunology , Lymphocytes/metabolism , Mice, Inbred C57BL , Trans-Activators/metabolism , Trans-Activators/genetics , Hexokinase/metabolism , Hexokinase/genetics , Gastrointestinal Tract/immunology , Gastrointestinal Tract/metabolism , Interleukin-17/metabolism , Adaptation, Physiological/immunology
3.
Proc Natl Acad Sci U S A ; 121(11): e2322574121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38451947

ABSTRACT

The somatosensory nervous system surveils external stimuli at barrier tissues, regulating innate immune cells under infection and inflammation. The roles of sensory neurons in controlling the adaptive immune system, and more specifically immunity to the microbiota, however, remain elusive. Here, we identified a mechanism for direct neuroimmune communication between commensal-specific T lymphocytes and somatosensory neurons mediated by the neuropeptide calcitonin gene-related peptide (CGRP) in the skin. Intravital imaging revealed that commensal-specific T cells are in close proximity to cutaneous nerve fibers in vivo. Correspondingly, we observed upregulation of the receptor for the neuropeptide CGRP, RAMP1, in CD8+ T lymphocytes induced by skin commensal colonization. The neuroimmune CGRP-RAMP1 signaling axis functions in commensal-specific T cells to constrain Type 17 responses and moderate the activation status of microbiota-reactive lymphocytes at homeostasis. As such, modulation of neuroimmune CGRP-RAMP1 signaling in commensal-specific T cells shapes the overall activation status of the skin epithelium, thereby impacting the outcome of responses to insults such as wounding. The ability of somatosensory neurons to control adaptive immunity to the microbiota via the CGRP-RAMP1 axis underscores the various layers of regulation and multisystem coordination required for optimal microbiota-reactive T cell functions under steady state and pathology.


Subject(s)
Calcitonin Gene-Related Peptide , Neuroimmunomodulation , Calcitonin Gene-Related Peptide/genetics , Receptor Activity-Modifying Protein 1/genetics , Receptors, Calcitonin Gene-Related Peptide , Adaptive Immunity
4.
Immunity ; 57(4): 859-875.e11, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38513665

ABSTRACT

At mucosal surfaces, epithelial cells provide a structural barrier and an immune defense system. However, dysregulated epithelial responses can contribute to disease states. Here, we demonstrated that epithelial cell-intrinsic production of interleukin-23 (IL-23) triggers an inflammatory loop in the prevalent oral disease periodontitis. Epithelial IL-23 expression localized to areas proximal to the disease-associated microbiome and was evident in experimental models and patients with common and genetic forms of disease. Mechanistically, flagellated microbial species of the periodontitis microbiome triggered epithelial IL-23 induction in a TLR5 receptor-dependent manner. Therefore, unlike other Th17-driven diseases, non-hematopoietic-cell-derived IL-23 served as an initiator of pathogenic inflammation in periodontitis. Beyond periodontitis, analysis of publicly available datasets revealed the expression of epithelial IL-23 in settings of infection, malignancy, and autoimmunity, suggesting a broader role for epithelial-intrinsic IL-23 in human disease. Collectively, this work highlights an important role for the barrier epithelium in the induction of IL-23-mediated inflammation.


Subject(s)
Interleukin-23 , Periodontitis , Humans , Epithelial Cells , Inflammation , Toll-Like Receptor 5/metabolism
5.
Proc Natl Acad Sci U S A ; 120(49): e2304905120, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38011570

ABSTRACT

Mild or transient dietary restriction (DR) improves many aspects of health and aging. Emerging evidence from us and others has demonstrated that DR also optimizes the development and quality of immune responses. However, the factors and mechanisms involved remain to be elucidated. Here, we propose that DR-induced optimization of immunological memory requires a complex cascade of events involving memory T cells, the intestinal microbiota, and myeloid cells. Our findings suggest that DR enhances the ability of memory T cells to recruit and activate myeloid cells in the context of a secondary infection. Concomitantly, DR promotes the expansion of commensal Bifidobacteria within the large intestine, which produce the short-chain fatty acid acetate. Acetate conditioning of the myeloid compartment during DR enhances the capacity of these cells to kill pathogens. Enhanced host protection during DR is compromised when Bifidobacteria expansion is prevented, indicating that microbiota configuration and function play an important role in determining immune responsiveness to this dietary intervention. Altogether, our study supports the idea that DR induces both memory T cells and the gut microbiota to produce distinct factors that converge on myeloid cells to promote optimal pathogen control. These findings suggest that nutritional cues can promote adaptation and co-operation between multiple immune cells and the gut microbiota, which synergize to optimize immunity and protect the collective metaorganism.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Fatty Acids, Volatile , Acetates
6.
Nat Immunol ; 24(8): 1331-1344, 2023 08.
Article in English | MEDLINE | ID: mdl-37443284

ABSTRACT

CD4+ T helper 17 (TH17) cells protect barrier tissues but also trigger autoimmunity. The mechanisms behind these opposing processes remain unclear. Here, we found that the transcription factor EGR2 controlled the transcriptional program of pathogenic TH17 cells in the central nervous system (CNS) but not that of protective TH17 cells at barrier sites. EGR2 was significantly elevated in myelin-reactive CD4+ T cells from patients with multiple sclerosis and mice with autoimmune neuroinflammation. The EGR2 transcriptional program was intricately woven within the TH17 cell transcriptional regulatory network and showed high interconnectivity with core TH17 cell-specific transcription factors. Mechanistically, EGR2 enhanced TH17 cell differentiation and myeloid cell recruitment to the CNS by upregulating pathogenesis-associated genes and myelomonocytic chemokines. T cell-specific deletion of Egr2 attenuated neuroinflammation without compromising the host's ability to control infections. Our study shows that EGR2 regulates tissue-specific and disease-specific functions in pathogenic TH17 cells in the CNS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Mice , Cell Differentiation , Central Nervous System , Mice, Inbred C57BL , Neuroinflammatory Diseases , Th1 Cells , Th17 Cells , Transcription Factors , Virulence , Humans
7.
Sci Immunol ; 8(80): eadd4132, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36827419

ABSTRACT

Plasmacytoid dendritic cells (pDCs) have been shown to play an important role during immune responses, ranging from initial viral control through the production of type I interferons to antigen presentation. However, recent studies uncovered unexpected heterogeneity among pDCs. We identified a previously uncharacterized immune subset, referred to as pDC-like cells, that not only resembles pDCs but also shares conventional DC (cDC) features. We show that this subset is a circulating precursor distinct from common DC progenitors, with prominent cDC2 potential. Our findings from human CD2-iCre and CD300c-iCre lineage tracing mouse models suggest that a substantial fraction of cDC2s originates from pDC-like cells, which can therefore be referred to as pre-DC2. This precursor subset responds to homeostatic cytokines, such as macrophage colony stimulating factor, by expanding and differentiating into cDC2 that efficiently prime T helper 17 (TH17) cells. Development of pre-DC2 into CX3CR1+ ESAM- cDC2b but not CX3CR1- ESAM+ cDC2a requires the transcription factor KLF4. Last, we show that, under homeostatic conditions, this developmental pathway regulates the immune threshold at barrier sites by controlling the pool of TH17 cells within skin-draining lymph nodes.


Subject(s)
CD4-Positive T-Lymphocytes , Gene Expression Regulation , Mice , Animals , Humans , CD4-Positive T-Lymphocytes/metabolism , Antigen Presentation , Th17 Cells/metabolism , Cells, Cultured , Dendritic Cells , Antigens, Surface , Membrane Glycoproteins
8.
Cell ; 186(3): 607-620.e17, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36640762

ABSTRACT

Tissue immunity and responses to injury depend on the coordinated action and communication among physiological systems. Here, we show that, upon injury, adaptive responses to the microbiota directly promote sensory neuron regeneration. At homeostasis, tissue-resident commensal-specific T cells colocalize with sensory nerve fibers within the dermis, express a transcriptional program associated with neuronal interaction and repair, and promote axon growth and local nerve regeneration following injury. Mechanistically, our data reveal that the cytokine interleukin-17A (IL-17A) released by commensal-specific Th17 cells upon injury directly signals to sensory neurons via IL-17 receptor A, the transcription of which is specifically upregulated in injured neurons. Collectively, our work reveals that in the context of tissue damage, preemptive immunity to the microbiota can rapidly bridge biological systems by directly promoting neuronal repair, while also identifying IL-17A as a major determinant of this fundamental process.


Subject(s)
Interleukin-17 , Microbiota , Nerve Regeneration , Th17 Cells , Axons , Nerve Regeneration/physiology , Sensory Receptor Cells , Animals , Mice , Th17 Cells/cytology
9.
bioRxiv ; 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38234748

ABSTRACT

The somatosensory nervous system surveils external stimuli at barrier tissues, regulating innate immune cells under infection and inflammation. The roles of sensory neurons in controlling the adaptive immune system, and more specifically immunity to the microbiota, however, remain elusive. Here, we identified a novel mechanism for direct neuroimmune communication between commensal-specific T lymphocytes and somatosensory neurons mediated by the neuropeptide Calcitonin Gene-Related Peptide (CGRP) in the skin. Intravital imaging revealed that commensal-specific T cells are in close proximity to cutaneous nerve fibers in vivo . Correspondingly, we observed upregulation of the receptor for the neuropeptide CGRP, RAMP1, in CD8 + T lymphocytes induced by skin commensal colonization. Neuroimmune CGRP-RAMP1 signaling axis functions in commensal-specific T cells to constrain Type 17 responses and moderate the activation status of microbiota-reactive lymphocytes at homeostasis. As such, modulation of neuroimmune CGRP-RAMP1 signaling in commensal-specific T cells shapes the overall activation status of the skin epithelium, thereby impacting the outcome of responses to insults such as wounding. The ability of somatosensory neurons to control adaptive immunity to the microbiota via the CGRP-RAMP1 axis underscores the various layers of regulation and multisystem coordination required for optimal microbiota-reactive T cell functions under steady state and pathology. Significance statement: Multisystem coordination at barrier surfaces is critical for optimal tissue functions and integrity, in response to microbial and environmental cues. In this study, we identified a novel neuroimmune crosstalk mechanism between the sensory nervous system and the adaptive immune response to the microbiota, mediated by the neuropeptide CGRP and its receptor RAMP1 on skin microbiota-induced T lymphocytes. The neuroimmune CGPR-RAMP1 axis constrains adaptive immunity to the microbiota and overall limits the activation status of the skin epithelium, impacting tissue responses to wounding. Our study opens the door to a new avenue to modulate adaptive immunity to the microbiota utilizing neuromodulators, allowing for a more integrative and tailored approach to harnessing microbiota-induced T cells to promote barrier tissue protection and repair.

10.
Proc Natl Acad Sci U S A ; 119(26): e2200348119, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35727974

ABSTRACT

Immune checkpoint inhibitors (ICIs) are essential components of the cancer therapeutic armamentarium. While ICIs have demonstrated remarkable clinical responses, they can be accompanied by immune-related adverse events (irAEs). These inflammatory side effects are of unclear etiology and impact virtually all organ systems, with the most common being sites colonized by the microbiota such as the skin and gastrointestinal tract. Here, we establish a mouse model of commensal bacteria-driven skin irAEs and demonstrate that immune checkpoint inhibition unleashes commensal-specific inflammatory T cell responses. These aberrant responses were dependent on production of IL-17 by commensal-specific T cells and induced pathology that recapitulated the cutaneous inflammation seen in patients treated with ICIs. Importantly, aberrant T cell responses unleashed by ICIs were sufficient to perpetuate inflammatory memory responses to the microbiota months following the cessation of treatment. Altogether, we have established a mouse model of skin irAEs and reveal that ICIs unleash aberrant immune responses against skin commensals, with long-lasting inflammatory consequences.


Subject(s)
Dermatitis , Immune Checkpoint Inhibitors , Microbiota , Animals , Dermatitis/immunology , Dermatitis/microbiology , Disease Models, Animal , Immune Checkpoint Inhibitors/adverse effects , Immunity/drug effects , Interleukin-17/metabolism , Mice , Microbiota/drug effects , Microbiota/immunology , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/immunology , Symbiosis/drug effects , T-Lymphocytes/immunology
11.
Microbiome ; 10(1): 43, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35272717

ABSTRACT

BACKGROUND: The human intestinal microbiome is a complex community that contributes to host health and disease. In addition to normal microbiota, pathogens like carbapenem-resistant Enterobacteriaceae may be asymptomatically present. When these bacteria are present at very low levels, they are often undetectable in hospital surveillance cultures, known as occult or subclinical colonization. Through the receipt of antibiotics, these subclinical pathogens can increase to sufficiently high levels to become detectable, in a process called outgrowth. However, little is known about the interaction between gut microbiota and Enterobacteriaceae during occult colonization and outgrowth. RESULTS: We developed a clinically relevant mouse model for studying occult colonization. Conventional wild-type mice without antibiotic pre-treatment were exposed to Klebsiella pneumoniae but rapidly tested negative for colonization. This occult colonization was found to perturb the microbiome as detected by both 16S rRNA amplicon and shotgun metagenomic sequencing. Outgrowth of occult K. pneumoniae was induced either by a four-antibiotic cocktail or by individual receipt of ampicillin, vancomycin, or azithromycin, which all reduced overall microbial diversity. Notably, vancomycin was shown to trigger K. pneumoniae outgrowth in only a subset of exposed animals (outgrowth-susceptible). To identify factors that underlie outgrowth susceptibility, we analyzed microbiome-encoded gene functions and were able to classify outgrowth-susceptible microbiomes using pathways associated with mRNA stability. Lastly, an evolutionary approach illuminated the importance of xylose metabolism in K. pneumoniae colonization, supporting xylose abundance as a second susceptibility indicator. We showed that our model is generalizable to other pathogens, including carbapenem-resistant Escherichia coli and Enterobacter cloacae. CONCLUSIONS: Our modeling of occult colonization and outgrowth could help the development of strategies to mitigate the risk of subsequent infection and transmission in medical facilities and the wider community. This study suggests that microbiota mRNA and small-molecule metabolites may be used to predict outgrowth-susceptibility. Video Abstract.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenem-Resistant Enterobacteriaceae/genetics , Intestines/microbiology , Klebsiella pneumoniae/genetics , Mice , RNA, Ribosomal, 16S/genetics
12.
Science ; 373(6561): eabi8835, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34529475

ABSTRACT

Puel and Casanova and Kisand et al. challenge our conclusions that interferonopathy and not IL-17/IL-22 autoantibodies promote candidiasis in autoimmune polyendocrinopathy­candidiasis­ectodermal dystrophy. We acknowledge that conclusive evidence for causation is difficult to obtain in complex human diseases. However, our studies clearly document interferonopathy driving mucosal candidiasis with intact IL-17/IL-22 responses in Aire-deficient mice, with strong corroborative evidence in patients.


Subject(s)
Immunity, Mucosal , Mycoses , Humans , Mucous Membrane , Animals , Mice
13.
Cell ; 184(14): 3794-3811.e19, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34166614

ABSTRACT

The microbiota plays a fundamental role in regulating host immunity. However, the processes involved in the initiation and regulation of immunity to the microbiota remain largely unknown. Here, we show that the skin microbiota promotes the discrete expression of defined endogenous retroviruses (ERVs). Keratinocyte-intrinsic responses to ERVs depended on cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes protein (STING) signaling and promoted the induction of commensal-specific T cells. Inhibition of ERV reverse transcription significantly impacted these responses, resulting in impaired immunity to the microbiota and its associated tissue repair function. Conversely, a lipid-enriched diet primed the skin for heightened ERV- expression in response to commensal colonization, leading to increased immune responses and tissue inflammation. Together, our results support the idea that the host may have co-opted its endogenous virome as a means to communicate with the exogenous microbiota, resulting in a multi-kingdom dialog that controls both tissue homeostasis and inflammation.


Subject(s)
Endogenous Retroviruses/physiology , Homeostasis , Inflammation/microbiology , Inflammation/pathology , Microbiota , Animals , Bacteria/metabolism , Chromosomes, Bacterial/genetics , Diet, High-Fat , Inflammation/immunology , Inflammation/virology , Interferon Type I/metabolism , Keratinocytes/metabolism , Membrane Proteins/metabolism , Mice, Inbred C57BL , Nucleotidyltransferases/metabolism , Retroelements/genetics , Signal Transduction , Skin/immunology , Skin/microbiology , T-Lymphocytes/immunology , Transcription, Genetic
14.
Science ; 371(6526)2021 01 15.
Article in English | MEDLINE | ID: mdl-33446526

ABSTRACT

Human monogenic disorders have revealed the critical contribution of type 17 responses in mucosal fungal surveillance. We unexpectedly found that in certain settings, enhanced type 1 immunity rather than defective type 17 responses can promote mucosal fungal infection susceptibility. Notably, in mice and humans with AIRE deficiency, an autoimmune disease characterized by selective susceptibility to mucosal but not systemic fungal infection, mucosal type 17 responses are intact while type 1 responses are exacerbated. These responses promote aberrant interferon-γ (IFN-γ)- and signal transducer and activator of transcription 1 (STAT1)-dependent epithelial barrier defects as well as mucosal fungal infection susceptibility. Concordantly, genetic and pharmacologic inhibition of IFN-γ or Janus kinase (JAK)-STAT signaling ameliorates mucosal fungal disease. Thus, we identify aberrant T cell-dependent, type 1 mucosal inflammation as a critical tissue-specific pathogenic mechanism that promotes mucosal fungal infection susceptibility in mice and humans.


Subject(s)
Candida albicans/immunology , Candidiasis, Chronic Mucocutaneous/genetics , Candidiasis, Chronic Mucocutaneous/immunology , Immunity, Mucosal/immunology , Polyendocrinopathies, Autoimmune/genetics , Polyendocrinopathies, Autoimmune/immunology , Adolescent , Adult , Aged , Animals , Disease Models, Animal , Female , Humans , Immunity, Mucosal/genetics , Immunologic Surveillance/genetics , Immunologic Surveillance/immunology , Interferon-gamma/genetics , Interleukins/genetics , Janus Kinases/genetics , Male , Mice , Mice, Inbred BALB C , Middle Aged , Mouth Mucosa/immunology , Mouth Mucosa/pathology , Receptors, Interleukin-17/genetics , STAT1 Transcription Factor/genetics , T-Lymphocytes/immunology , Young Adult , Interleukin-22
15.
Cell Host Microbe ; 29(2): 210-221.e6, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33385336

ABSTRACT

Candida auris is an emerging multi-drug-resistant human fungal pathogen. C. auris skin colonization results in environmental shedding, which underlies hospital transmissions, and predisposes patients to subsequent infections. We developed a murine skin topical exposure model for C. auris to dissect risk factors for colonization and to test interventions that might protect patients. We demonstrate that C. auris establishes long-term residence within the skin tissue compartment, which would elude clinical surveillance. The four clades of C. auris, with geographically distinct origins, differ in their abilities to colonize murine skin, mirroring epidemiologic findings. The IL-17 receptor signaling and specific arms of immunity protect mice from long-term C. auris skin colonization. We further determine that commonly used chlorhexidine antiseptic serves as a protective and decolonizing agent against C. auris. This translational model facilitates an integrated approach to develop strategies to combat the unfolding global outbreaks of C. auris and other skin-associated microbial pathogens.


Subject(s)
Candida/immunology , Candidiasis/transmission , Skin/immunology , Skin/microbiology , Viral Tropism , Animals , Anti-Infective Agents, Local/pharmacology , Antifungal Agents/pharmacology , Candida/drug effects , Candidiasis/prevention & control , Chlorhexidine/pharmacology , Disease Models, Animal , Interleukin-17/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-17/immunology , Risk Factors , Skin/pathology , Th17 Cells/immunology
16.
Nature ; 587(7834): 472-476, 2020 11.
Article in English | MEDLINE | ID: mdl-33149302

ABSTRACT

The central nervous system has historically been viewed as an immune-privileged site, but recent data have shown that the meninges-the membranes that surround the brain and spinal cord-contain a diverse population of immune cells1. So far, studies have focused on macrophages and T cells, but have not included a detailed analysis of meningeal humoral immunity. Here we show that, during homeostasis, the mouse and human meninges contain IgA-secreting plasma cells. These cells are positioned adjacent to dural venous sinuses: regions of slow blood flow with fenestrations that can potentially permit blood-borne pathogens to access the brain2. Peri-sinus IgA plasma cells increased with age and following a breach of the intestinal barrier. Conversely, they were scarce in germ-free mice, but their presence was restored by gut re-colonization. B cell receptor sequencing confirmed that meningeal IgA+ cells originated in the intestine. Specific depletion of meningeal plasma cells or IgA deficiency resulted in reduced fungal entrapment in the peri-sinus region and increased spread into the brain following intravenous challenge, showing that meningeal IgA is essential for defending the central nervous system at this vulnerable venous barrier surface.


Subject(s)
Cranial Sinuses/immunology , Gastrointestinal Microbiome/immunology , Immunoglobulin A, Secretory/immunology , Intestines/immunology , Meninges/immunology , Plasma Cells/immunology , Aged , Aging/immunology , Animals , Blood-Brain Barrier/immunology , Female , Fungi/immunology , Germ-Free Life , Humans , Intestines/cytology , Intestines/microbiology , Male , Meninges/blood supply , Meninges/cytology , Mice , Mice, Inbred C57BL , Plasma Cells/cytology
17.
Proc Natl Acad Sci U S A ; 117(28): 16465-16474, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32601220

ABSTRACT

Under steady-state conditions, the immune system is poised to sense and respond to the microbiota. As such, immunity to the microbiota, including T cell responses, is expected to precede any inflammatory trigger. How this pool of preformed microbiota-specific T cells contributes to tissue pathologies remains unclear. Here, using an experimental model of psoriasis, we show that recall responses to commensal skin fungi can significantly aggravate tissue inflammation. Enhanced pathology caused by fungi preexposure depends on Th17 responses and neutrophil extracellular traps and recapitulates features of the transcriptional landscape of human lesional psoriatic skin. Together, our results propose that recall responses directed to skin fungi can directly promote skin inflammation and that exploration of tissue inflammation should be assessed in the context of recall responses to the microbiota.


Subject(s)
Arthrodermataceae/physiology , Microbiota , Psoriasis/immunology , Skin/microbiology , Animals , Arthrodermataceae/classification , Arthrodermataceae/genetics , Arthrodermataceae/isolation & purification , Extracellular Traps/immunology , Extracellular Traps/microbiology , Female , Humans , Immunity , Male , Mice , Mice, Inbred C57BL , Psoriasis/microbiology , Psoriasis/pathology , Skin/immunology , Skin/pathology , Symbiosis , Th17 Cells/immunology
18.
Proc Natl Acad Sci U S A ; 116(47): 23643-23652, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31672911

ABSTRACT

The cross-talk between the microbiota and the immune system plays a fundamental role in the control of host physiology. However, the tissue-specific factors controlling this dialogue remain poorly understood. Here we demonstrate that T cell responses to commensal colonization are associated with the development of organized cellular clusters within the skin epithelium. These organized lymphocyte clusters are surrounded by keratinocytes expressing a discrete program associated with antigen presentation and antimicrobial defense. Notably, IL-22-mediated keratinocyte-intrinsic MHC class II expression was required for the selective accumulation of commensal-induced IFN-γ, but not IL-17A-producing CD4+ T cells within the skin. Taking these data together, this work uncovers an unexpected role for MHC class II expression by keratinocytes in the control of homeostatic type 1 responses to the microbiota. Our findings have important implications for the understanding of the tissue-specific rules governing the dialogue between a host and its microbiota.


Subject(s)
Epidermis/microbiology , Histocompatibility Antigens Class II/biosynthesis , Host Microbial Interactions/immunology , Keratinocytes/immunology , Microbiota/immunology , Th1 Cells/immunology , Animals , Antigen Presentation , Candida albicans/immunology , Epidermis/immunology , Genes, MHC Class II , Interferon-gamma/biosynthesis , Keratinocytes/metabolism , Mice , Mice, Inbred C57BL , Organ Specificity , Radiation Chimera , Specific Pathogen-Free Organisms , Staphylococcus aureus/immunology , Staphylococcus epidermidis/immunology , Symbiosis , Th1 Cells/metabolism
19.
Science ; 366(6464)2019 10 25.
Article in English | MEDLINE | ID: mdl-31649166

ABSTRACT

How early-life colonization and subsequent exposure to the microbiota affect long-term tissue immunity remains poorly understood. Here, we show that the development of mucosal-associated invariant T (MAIT) cells relies on a specific temporal window, after which MAIT cell development is permanently impaired. This imprinting depends on early-life exposure to defined microbes that synthesize riboflavin-derived antigens. In adults, cutaneous MAIT cells are a dominant population of interleukin-17A (IL-17A)-producing lymphocytes, which display a distinct transcriptional signature and can subsequently respond to skin commensals in an IL-1-, IL-18-, and antigen-dependent manner. Consequently, local activation of cutaneous MAIT cells promotes wound healing. Together, our work uncovers a privileged interaction between defined members of the microbiota and MAIT cells, which sequentially controls both tissue-imprinting and subsequent responses to injury.


Subject(s)
Microbiota/immunology , Mucosal-Associated Invariant T Cells/cytology , Riboflavin/biosynthesis , Wound Healing/immunology , Animals , Bacteria/classification , Bacteria/metabolism , Germ-Free Life , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Interleukin-1/immunology , Interleukin-17/immunology , Interleukin-18/immunology , Interleukin-23/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/immunology , Skin/immunology , Skin/microbiology , Specific Pathogen-Free Organisms
20.
Science ; 363(6422)2019 01 04.
Article in English | MEDLINE | ID: mdl-30523076

ABSTRACT

Barrier tissues are primary targets of environmental stressors and are home to the largest number of antigen-experienced lymphocytes in the body, including commensal-specific T cells. We found that skin-resident commensal-specific T cells harbor a paradoxical program characterized by a type 17 program associated with a poised type 2 state. Thus, in the context of injury and exposure to inflammatory mediators such as interleukin-18, these cells rapidly release type 2 cytokines, thereby acquiring contextual functions. Such acquisition of a type 2 effector program promotes tissue repair. Aberrant type 2 responses can also be unleashed in the context of local defects in immunoregulation. Thus, commensal-specific T cells co-opt tissue residency and cell-intrinsic flexibility as a means to promote both local immunity and tissue adaptation to injury.


Subject(s)
Cell Plasticity , Skin/injuries , Skin/microbiology , Symbiosis , Th17 Cells/immunology , Th17 Cells/microbiology , Wounds and Injuries/immunology , Alarmins/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/microbiology , Candida albicans , Female , GATA3 Transcription Factor/metabolism , Interleukins/immunology , Male , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Confocal , Microscopy, Fluorescence , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Sequence Analysis, RNA , Staphylococcus epidermidis , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...