Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 42(8): 112985, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37590135

ABSTRACT

The balance of contralateral and ipsilateral retinogeniculate projections is critical for binocular vision, but the transcriptional programs regulating this process remain ill defined. Here we show that the Pou class homeobox protein POU3F1 is expressed in nascent mouse contralateral retinal ganglion cells (cRGCs) but not ipsilateral RGCs (iRGCs). Upon Pou3f1 inactivation, the proportion of cRGCs is reduced in favor of iRGCs, leading to abnormal projection ratios at the optic chiasm. Conversely, misexpression of Pou3f1 in progenitors increases the production of cRGCs. Using CUT&RUN and RNA sequencing in gain- and loss-of-function assays, we demonstrate that POU3F1 regulates expression of several key members of the cRGC gene regulatory network. Finally, we report that POU3F1 is sufficient to induce RGC-like cell production, even in late-stage retinal progenitors of Atoh7 knockout mice. This work uncovers POU3F1 as a regulator of the cRGC transcriptional program, opening possibilities for optic nerve regenerative therapies.

2.
Elife ; 102021 12 03.
Article in English | MEDLINE | ID: mdl-34860155

ABSTRACT

Neurodevelopmental axonal pathfinding plays a central role in correct brain wiring and subsequent cognitive abilities. Within the growth cone, various intracellular effectors transduce axonal guidance signals by remodeling the cytoskeleton. Semaphorin-3E (Sema3E) is a guidance cue implicated in development of the fornix, a neuronal tract connecting the hippocampus to the hypothalamus. Microtubule-associated protein 6 (MAP6) has been shown to be involved in the Sema3E growth-promoting signaling pathway. In this study, we identified the collapsin response mediator protein 4 (CRMP4) as a MAP6 partner and a crucial effector in Sema3E growth-promoting activity. CRMP4-KO mice displayed abnormal fornix development reminiscent of that observed in Sema3E-KO mice. CRMP4 was shown to interact with the Sema3E tripartite receptor complex within detergent-resistant membrane (DRM) domains, and DRM domain integrity was required to transduce Sema3E signaling through the Akt/GSK3 pathway. Finally, we showed that the cytoskeleton-binding domain of CRMP4 is required for Sema3E's growth-promoting activity, suggesting that CRMP4 plays a role at the interface between Sema3E receptors, located in DRM domains, and the cytoskeleton network. As the fornix is affected in many psychiatric diseases, such as schizophrenia, our results provide new insights to better understand the neurodevelopmental components of these diseases.


Subject(s)
Fornix, Brain/growth & development , Nerve Tissue Proteins/genetics , Semaphorins/genetics , Signal Transduction , Animals , Female , Fornix, Brain/metabolism , Male , Mice , Nerve Tissue Proteins/metabolism , Semaphorins/metabolism
3.
Front Mol Neurosci ; 14: 665693, 2021.
Article in English | MEDLINE | ID: mdl-34025352

ABSTRACT

The development and function of the central nervous system rely on the microtubule (MT) and actin cytoskeletons and their respective effectors. Although the structural role of the cytoskeleton has long been acknowledged in neuronal morphology and activity, it was recently recognized to play the role of a signaling platform. Following this recognition, research into Microtubule Associated Proteins (MAPs) diversified. Indeed, historically, structural MAPs-including MAP1B, MAP2, Tau, and MAP6 (also known as STOP);-were identified and described as MT-binding and -stabilizing proteins. Extensive data obtained over the last 20 years indicated that these structural MAPs could also contribute to a variety of other molecular roles. Among multi-role MAPs, MAP6 provides a striking example illustrating the diverse molecular and cellular properties of MAPs and showing how their functional versatility contributes to the central nervous system. In this review, in addition to MAP6's effect on microtubules, we describe its impact on the actin cytoskeleton, on neuroreceptor homeostasis, and its involvement in signaling pathways governing neuron development and maturation. We also discuss its roles in synaptic plasticity, brain connectivity, and cognitive abilities, as well as the potential relationships between the integrated brain functions of MAP6 and its molecular activities. In parallel, the Collapsin Response Mediator Proteins (CRMPs) are presented as examples of how other proteins, not initially identified as MAPs, fall into the broader MAP family. These proteins bind MTs as well as exhibiting molecular and cellular properties very similar to MAP6. Finally, we briefly summarize the multiple similarities between other classical structural MAPs and MAP6 or CRMPs.In summary, this review revisits the molecular properties and the cellular and neuronal roles of the classical MAPs, broadening our definition of what constitutes a MAP.

4.
PLoS One ; 15(7): e0234529, 2020.
Article in English | MEDLINE | ID: mdl-32673338

ABSTRACT

Morphometry characterization is an important procedure in describing neuronal cultures and identifying phenotypic differences. This task usually requires labor-intensive measurements and the classification of numerous neurites from large numbers of neurons in culture. To automate these measurements, we wrote AutoNeuriteJ, an imageJ/Fiji plugin that measures and classifies neurites from a very large number of neurons. We showed that AutoNeuriteJ is able to detect variations of neuritic growth induced by several compounds known to affect the neuronal growth. In these experiments measurement of more than 5000 mouse neurons per conditions was obtained within a few hours. Moreover, by analyzing mouse neurons deficient for the microtubule associated protein 6 (MAP6) and wild type neurons we illustrate that AutoNeuriteJ is capable to detect subtle phenotypic difference in axonal length. Overall the use of AutoNeuriteJ will provide rapid, unbiased and accurate measurement of neuron morphologies.


Subject(s)
Image Processing, Computer-Assisted/methods , Neurites/metabolism , Neurons/physiology , Animals , Axons/physiology , Cell Proliferation , Cells, Cultured , Hippocampus/physiology , Mice , Mice, Knockout , Microtubule-Associated Proteins/genetics , Neurogenesis/physiology , Software
5.
Nat Struct Mol Biol ; 26(7): 571-582, 2019 07.
Article in English | MEDLINE | ID: mdl-31235911

ABSTRACT

Vasohibins are tubulin tyrosine carboxypeptidases that are important in neuron physiology. We examined the crystal structures of human vasohibin 1 and 2 in complex with small vasohibin-binding protein (SVBP) in the absence and presence of different inhibitors and a C-terminal α-tubulin peptide. In combination with functional data, we propose that SVBP acts as an activator of vasohibins. An extended groove and a distinctive surface residue patch of vasohibins define the specific determinants for recognizing and cleaving the C-terminal tyrosine of α-tubulin and for binding microtubules, respectively. The vasohibin-SVBP interaction and the ability of the enzyme complex to associate with microtubules regulate axon specification of neurons. Our results define the structural basis of tubulin detyrosination by vasohibins and show the relevance of this process for neuronal development. Our findings offer a unique platform for developing drugs against human conditions with abnormal tubulin tyrosination levels, such as cancer, heart defects and possibly brain disorders.


Subject(s)
Angiogenic Proteins/metabolism , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Tubulin/metabolism , Angiogenic Proteins/chemistry , Animals , Carrier Proteins/chemistry , Cell Cycle Proteins/chemistry , Cells, Cultured , Crystallography, X-Ray , HEK293 Cells , Humans , Mice , Models, Molecular , Protein Conformation , Protein Interaction Maps , Tubulin/chemistry
6.
Science ; 358(6369): 1448-1453, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29146868

ABSTRACT

Reversible detyrosination of α-tubulin is crucial to microtubule dynamics and functions, and defects have been implicated in cancer, brain disorganization, and cardiomyopathies. The identity of the tubulin tyrosine carboxypeptidase (TCP) responsible for detyrosination has remained unclear. We used chemical proteomics with a potent irreversible inhibitor to show that the major brain TCP is a complex of vasohibin-1 (VASH1) with the small vasohibin binding protein (SVBP). VASH1 and its homolog VASH2, when complexed with SVBP, exhibited robust and specific Tyr/Phe carboxypeptidase activity on microtubules. Knockdown of vasohibins or SVBP and/or inhibitor addition in cultured neurons reduced detyrosinated α-tubulin levels and caused severe differentiation defects. Furthermore, knockdown of vasohibins disrupted neuronal migration in developing mouse neocortex. Thus, vasohibin/SVBP complexes represent long-sought TCP enzymes.


Subject(s)
Angiogenic Proteins/metabolism , Carboxypeptidases/metabolism , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Neurogenesis , Neurons/cytology , Tyrosine/metabolism , Angiogenic Proteins/genetics , Animals , Carboxypeptidases/genetics , Carrier Proteins/genetics , Cell Cycle Proteins/genetics , Cell Movement , Female , Gene Knockdown Techniques , HEK293 Cells , Humans , Male , Mice , Neocortex/cytology , Neocortex/embryology , Neurons/enzymology , Proteomics , Tubulin/metabolism
7.
Sci Rep ; 7(1): 10308, 2017 09 04.
Article in English | MEDLINE | ID: mdl-28871106

ABSTRACT

In the central nervous system, microtubule-associated protein 6 (MAP6) is expressed at high levels and is crucial for cognitive abilities. The large spectrum of social and cognitive impairments observed in MAP6-KO mice are reminiscent of the symptoms observed in psychiatric diseases, such as schizophrenia, and respond positively to long-term treatment with antipsychotics. MAP6-KO mice have therefore been proposed to be a useful animal model for these diseases. Here, we explored the brain anatomy in MAP6-KO mice using high spatial resolution 3D MRI, including a volumetric T1w method to image brain structures, and Diffusion Tensor Imaging (DTI) for white matter fiber tractography. 3D DTI imaging of neuronal tracts was validated by comparing results to optical images of cleared brains. Changes to brain architecture included reduced volume of the cerebellum and the thalamus and altered size, integrity and spatial orientation of some neuronal tracks such as the anterior commissure, the mammillary tract, the corpus callosum, the corticospinal tract, the fasciculus retroflexus and the fornix. Our results provide information on the neuroanatomical defects behind the neurological phenotype displayed in the MAP6-KO mice model and especially highlight a severe damage of the corticospinal tract with defasciculation at the location of the pontine nuclei.


Subject(s)
Brain Mapping , Brain/diagnostic imaging , Brain/metabolism , Imaging, Three-Dimensional , Mental Disorders/diagnosis , Mental Disorders/etiology , Animals , Brain/pathology , Disease Models, Animal , Female , Image Processing, Computer-Assisted , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging , Male , Mice , Mice, Knockout , Microscopy, Fluorescence , Microtubule-Associated Proteins/deficiency , Neural Pathways
8.
Nat Commun ; 6: 7246, 2015 Jun 03.
Article in English | MEDLINE | ID: mdl-26037503

ABSTRACT

Structural microtubule associated proteins (MAPs) stabilize microtubules, a property that was thought to be essential for development, maintenance and function of neuronal circuits. However, deletion of the structural MAPs in mice does not lead to major neurodevelopment defects. Here we demonstrate a role for MAP6 in brain wiring that is independent of microtubule binding. We find that MAP6 deletion disrupts brain connectivity and is associated with a lack of post-commissural fornix fibres. MAP6 contributes to fornix development by regulating axonal elongation induced by Semaphorin 3E. We show that MAP6 acts downstream of receptor activation through a mechanism that requires a proline-rich domain distinct from its microtubule-stabilizing domains. We also show that MAP6 directly binds to SH3 domain proteins known to be involved in neurite extension and semaphorin function. We conclude that MAP6 is critical to interface guidance molecules with intracellular signalling effectors during the development of cerebral axon tracts.


Subject(s)
Axons/metabolism , Fornix, Brain/embryology , Glycoproteins/metabolism , Membrane Proteins/metabolism , Microtubule-Associated Proteins/genetics , Neurons/metabolism , Animals , Brain/metabolism , Brain/pathology , Cytoskeletal Proteins , Diffusion Tensor Imaging , Fornix, Brain/metabolism , Fornix, Brain/pathology , HEK293 Cells , Humans , Magnetic Resonance Imaging , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron , Neural Pathways/embryology , Neural Pathways/metabolism , Neurites/metabolism , Neuroanatomical Tract-Tracing Techniques , Organ Size , Semaphorins , src Homology Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...