Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharm ; 19(10): 3673-3680, 2022 10 03.
Article in English | MEDLINE | ID: mdl-35998011

ABSTRACT

Molecular imaging with PET offers an alternative method to quantify programmed-death-ligand 1 (PD-L1) to accurately select patients for immunotherapies. More and more clinical and preclinical trials involve radiolabeling of antibody fragments for their desirably fast clearance and high tumor penetration. As the radiolabeling strategy can significantly impact pharmacokinetics and biodistribution, we explored in this work a site-specific radiofluorination strategy on an anti-PD-L1 fragment antigen-binding (Fab) and compared the pharmacokinetic and biodistribution properties with the same Fab labeled using stochastic radiolabeling chemistry. We applied an enzymatic bioconjugation mediated by a variant of the lipoic acid ligase (LplA) that promotes the formation of an amide bond between a short peptide cloned onto the C terminus of the Fab. A synthetic analogue of the enzyme natural substrate, lipoic acid, was radiolabeled with fluorine-18 for site-specific conjugation by LplA. We compared the biodistribution of the site-specifically labeled Fab with a stochastically labeled Fab on lysine side chains in tumor-bearing mice. The two methods of fluorination demonstrate a comparable whole-body biodistribution. The 89Zr-labeled Fab had different biodistribution compared to either 18F-labeled Fab. We attribute the difference to [89Zr] metabolism. Fab-LAP-[18F]FPyOctA therefore reflects better the true pharmacokinetic profile of the Fab.


Subject(s)
Neoplasms , Thioctic Acid , Amides , Animals , B7-H1 Antigen , Cell Line, Tumor , Fluorine Radioisotopes , Immunoglobulin Fragments/metabolism , Ligands , Ligases/metabolism , Lysine/metabolism , Mice , Peptides/metabolism , Positron-Emission Tomography/methods , Radiopharmaceuticals/pharmacokinetics , Tissue Distribution
2.
J Nucl Med ; 63(8): 1259-1265, 2022 08.
Article in English | MEDLINE | ID: mdl-34933891

ABSTRACT

PET imaging of programmed cell death ligand 1 (PD-L1) may help to noninvasively predict and monitor responses to anti-programmed cell death 1/anti-PD-L1 immunotherapies. In this study, we compared the imaging characteristics of 3 radioligands derived from the anti-PD-L1 IgG1 complement 4 (C4). In addition to the IgG C4, we produced a fragment antigen-binding (Fab) C4, as well as a double-mutant IgG C4 (H310A/H435Q) with minimal affinity for the murine neonatal Fc receptor. Methods: The pharmacokinetics, biodistribution, and dosimetry of the 3 89Zr-labeled C4 ligands were compared by longitudinal PET/CT imaging in nude mice bearing subcutaneous human non-small cell lung cancer xenografts with positive (H1975 model) or negative (A549 model) endogenous PD-L1 expression. Results: The C4 radioligands substantially accumulated in PD-L1-positive tumors but not in PD-L1-negative tumors or in blocked PD-L1-positive tumors, confirming their PD-L1-specific tumor targeting. 89Zr-Fab C4 and 89Zr-IgG C4 (H310A/H435Q) were rapidly eliminated compared with 89Zr-IgG C4. Consequently, maximal tumor-to-muscle ratios were obtained earlier, at 4 h after injection for 89Zr-Fab C4 (ratio, ∼6) and 24 h after injection for 89Zr-IgG C4 (H310A/H435Q) (ratio, ∼9), versus 48 h after injection for 89Zr-IgG C4 (ratio, ∼8). Background activity in nontumor tissues was low, except for high kidney retention of 89Zr-Fab C4 and persistent liver accumulation of 89Zr-IgG C4 (H310A/H435Q) compared with 89Zr-IgG C4. Dosimetry estimates suggested that the C4 radioligands would yield organ-absorbed doses tolerable for repeated clinical PET imaging studies. Conclusion: This study highlights the potential of designing radioligands with shorter pharmacokinetics for PD-L1 immuno-PET imaging in a preclinical model and encourages further clinical translation of such radioligands.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , B7-H1 Antigen/metabolism , Cell Line, Tumor , Humans , Immunoglobulin G , Mice , Mice, Nude , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography/methods , Tissue Distribution , Zirconium
3.
Pharmacol Ther ; 222: 107786, 2021 06.
Article in English | MEDLINE | ID: mdl-33307142

ABSTRACT

Despite the remarkable clinical successes of immune checkpoint inhibitors (ICIs) in various advanced cancers, response is still limited to a subset of patients that generally exhibit tumoral expression of immune checkpoint (IC) proteins. Development of biomarkers assessing the expression of such ICs is therefore a major challenge nowadays to refine patient selection and improve therapeutic benefits. Positron emission tomography (PET) imaging using IC-targeted radiolabeled monoclonal antibodies (immunoPET) provides a non-invasive and whole-body visualization of in vivo IC biodistribution. As such, PET imaging of ICs may serve as a robust biomarker to predict and monitor responses to ICIs, complementing the existing immunohistochemical techniques. Besides monoclonal antibodies, other PET radioligand formats, ranging from antibody-derived fragments to small proteins, have gained increasing interest owing to their faster pharmacokinetics and enhanced imaging characteristics. We provide an overview of the various strategies investigated so far for PET imaging of ICs in preclinical and clinical studies, emphasizing their benefits and limitations. Moreover, we discuss various parameters to consider for designing optimized and best-suited PET radioligands.


Subject(s)
Immune Checkpoint Proteins , Neoplasms , Positron-Emission Tomography , Humans , Neoplasms/diagnostic imaging
4.
J Control Release ; 328: 304-312, 2020 12 10.
Article in English | MEDLINE | ID: mdl-32860928

ABSTRACT

Epidermal growth factor receptor (EGFR), involved in cell proliferation and migration, is overexpressed in ~50% of glioblastomas. Anti-EGFR based strategies using monoclonal antibodies (mAb) such as cetuximab (CTX) have been proposed for central nervous system (CNS) cancer therapy. However, the blood-brain barrier (BBB) drastically restricts their brain penetration which limits their efficacy for the treatment of glioblastomas. Herein, a longitudinal PET imaging study was performed to assess the relevance and the impact of focused ultrasound (FUS)-mediated BBB permeabilization on the brain exposure to the anti-EGFR mAb CTX over time. For this purpose, FUS permeabilization process with microbubbles was applied on intact BBB mouse brain before the injection of 89Zr-labeled CTX for longitudinal imaging monitoring. FUS induced a dramatic increase in mAb penetration to the brain, 2 times higher compared to the intact BBB. The transfer of 89Zr-CTX from blood to the brain was rendered significant by FUS (kuptake = 1.3 ± 0.23 min-1 with FUS versus kuptake = 0 ± 0.006 min-1 without FUS). FUS allowed significant and prolonged exposure to mAb in the brain parenchyma. This study confirms the potential of FUS as a target delivery method for mAb in CNS.


Subject(s)
Blood-Brain Barrier , Microbubbles , Animals , Brain , Cetuximab , Drug Delivery Systems , Kinetics , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...