Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 48(20): 5237-5240, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37831836

ABSTRACT

An all-fiber polarization maintaining (PM) laser tunable over 170 nm via Raman soliton self-frequency shift (SSFS) delivering sub-100 fs pulses with a central wavelength ranging from 1880 to 2050 nm is presented. The 40 MHz laser emits power ranging from 15 to 34 mW with pulse duration as short as 80 fs. It is based on exclusively commercially available standard fibers and has been designed to produce sub-100 fs pulse durations over the whole spectral range without the need for adjusting neither nonlinearities nor dispersion. The laser is versatile and a robust potential alternative to Tm and Tm:Ho oscillators.

2.
Opt Express ; 30(7): 10605-10613, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35473023

ABSTRACT

We report on an all-fiber 200 W widely tunable GHz electro-optic (EO) frequency comb operating in the nonlinear regime. The EO comb pulses at 1030 nm are initially pre-compressed to sub-2 ps, then power amplified to 2.5 W, and finally boosted to 200 W in a newly designed large-mode-area, Yb-doped photonic crystal fiber. Continuously tunable across 12-18 GHz, the picosecond pulses experience nonlinear propagation in the last amplifier, leading to output pulses compressible down to several hundreds of femtoseconds. To push our system deeper into nonlinear amplification regime, the pulse repetition rate is further reduced to 2 GHz, enabling significant spectral broadening at 200 W. Characterization reveals sub-200 fs duration after compression. The present EO-comb seeded nonlinear amplification system opens a new route to the development of high-power, tunable GHz-repetition-rate, femtosecond fiber lasers.

3.
Appl Opt ; 59(24): 7390-7395, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32902507

ABSTRACT

We report a full experimental comparison study on the injection of a Ti:Sa multi-terawatt amplifier chain with a standard 15 fs Ti:Sa oscillator and 35 fs frequency-doubled fiber oscillator. The study highlights that the Ti:Sa oscillator, with high performance in terms of pulse duration and spectral width, can be replaced by the frequency-doubled fiber oscillator to seed Ti:Sa amplifier chains almost without any compromise on the output pulse duration and picosecond contrast. Finally, we demonstrate for the first time to our knowledge a 30 TW and 33 fs Ti:Sa amplifier injected by a fiber oscillator.

4.
Opt Express ; 28(8): 10960-10969, 2020 Apr 13.
Article in English | MEDLINE | ID: mdl-32403617

ABSTRACT

We demonstrate a robust linearly polarized 365 W, very low amplitude noise, single frequency master oscillator power amplifier at 1064 nm. Power scaling was done through a custom large mode area fiber with a mode field diameter of 30 µm. No evidence of stimulated Brillouin scattering or modal instabilities are observed. The relative intensity noise is reduced down to -160 dBc/Hz between 2 kHz and 10 kHz via a wide band servo loop (1 MHz bandwidth). We achieve 350 W of isolated power, with a power stability < 0.7% RMS over 1100 hours of continuous operation and a near diffraction limited beam (M2 < 1.1).

5.
Opt Lett ; 35(19): 3156-8, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20890318

ABSTRACT

We report the generation of high-energy high-peak power pulses in an all-normal dispersion fiber laser featuring large-mode-area photonic crystal fibers. The self-starting chirped-pulse fiber oscillator delivers 11 W of average power at 15.5 MHz repetition rate, resulting in 710 nJ of pulse energy. The output pulses are dechirped outside the cavity from 7 ps to nearly transform-limited duration of 300 fs, leading to pulse peak powers as high as 1.9 MW. Numerical simulations reveal that pulse shaping is dominated by the amplitude modulation and spectral filtering provided by a resonant semiconductor saturable absorber.

6.
Opt Lett ; 35(10): 1650-2, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20479838

ABSTRACT

We report what we believe to be the first millijoule-class ytterbium-doped fiber laser system operating on the zero-phonon line at 977 nm. An actively Q-switched master fiber oscillator delivers nanosecond pulses (FWHM 12-32 ns) at adjustable multiples of 10 kHz repetition rates that are further amplified in an ultralarge core photonic crystal fiber amplifier. At the highest available pumping level, a maximal average power of 78 W was obtained for 32 ns pulses at a repetition rate of 190 kHz, whereas the millijoule energy level was reached for 12 ns pulses at the lower repetition rate of 10 kHz.

7.
Opt Lett ; 34(9): 1489-91, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19412315

ABSTRACT

We report the first experimental demonstration (to our knowledge) of high-order harmonic generation in rare gases driven by a state-of-the-art high-power Yb-doped-fiber chirped-pulse amplification system. The fiber laser delivers 270 fs pulses in the 30-100 microJ energy range at repetition rates varying from 100 kHz to 1 MHz. A proper focalization allows reaching several 10(13) W/cm2 in a gas jet. We have been able to produce and detect harmonics up to order 31 (33.2 nm) in Ar at a 100 kHz repetition rate. High-order harmonic generation at 1 MHz is also demonstrated in Xe up to harmonic 15. The demonstrated extreme UV (XUV) source will bring ultrashort XUV coincidence experiments from synchrotron facilities to tabletop laboratories.

8.
Opt Express ; 16(22): 17891-902, 2008 Oct 27.
Article in English | MEDLINE | ID: mdl-18958071

ABSTRACT

In this paper, we investigate power scalability of ytterbium-doped ultra large core photonic crystal fiber laser operating on the zero-line transition. We first report on an 80 microm core diameter ytterbium-doped rod-type photonic crystal fiber laser emitting up to 94 W in continuous wave regime when operating at 977 nm, which is to our knowledge the highest output power ever achieved from a single-mode solid-state laser operating at this wavelength. Key parameters of ytterbium-doped three-level laser, such as transparency pump intensity, pump absorption saturation, and gain competition between three and four-level laser operation are then discussed in the particular context of high power fiber laser operating at 977 nm.

9.
Opt Lett ; 30(15): 1962-4, 2005 Aug 01.
Article in English | MEDLINE | ID: mdl-16092233

ABSTRACT

Coherent combining is demonstrated in a clad-pumped Yb-doped double-core fiber laser. A slope efficiency of more than 70% is achieved with 96% of the total output power in the fundamental mode of one of the two cores. This high combining efficiency is obtained when both cores are coupled via a biconical fused taper in a Michelson interferometer configuration.

SELECTION OF CITATIONS
SEARCH DETAIL
...