Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Heliyon ; 9(12): e22986, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38144267

ABSTRACT

The ardA genes are present in a wide variety of conjugative plasmids and play an important role in overcoming the restriction barrier. To date, there is no information on the chromosomal ardA genes. It is still unclear whether they keep their antirestriction activity and why bacterial chromosomes contain these genes. In the present study, we confirmed the antirestriction function of the ardA gene from the Bifidobacterium bifidum chromosome. Transcriptome analysis in Escherichia coli showed that the range of regulated genes varies significantly for ardA from conjugative plasmid pKM101 and from the B. bifidum chromosome. Moreover, if the targets for both ardA genes match, they often show an opposite effect on regulated gene expression. The results obtained indicate two seemingly mutually exclusive conclusions. On the one hand, the pleiotropic effect of ardA genes was shown not only on restriction-modification system, but also on expression of a number of other genes. On the other hand, the range of affected genes varies significally for ardA genes from different sources, which indicates the specificity of ardA to inhibited targets. Author Summary. Conjugative plasmids, bacteriophages, as well as transposons, are capable to transfer various genes, including antibiotic resistance genes, among bacterial cells. However, many of those genes pose a threat to the bacterial cells, therefore bacterial cells have special restriction systems that limit such transfer. Antirestriction genes have previously been described as a part of conjugative plasmids, and bacteriophages and transposons. Those plasmids are able to overcome bacterial cell protection in the presence of antirestriction genes, which inhibit bacterial restriction systems. This work unveils the antirestriction mechanisms, which play an important role in the bacterial life cycle. Here, we clearly show that antirestriction genes, which are able to inhibit cell protection, exist not only in plasmids but also in the bacterial chromosomes themselves. Moreover, antirestrictases have not only an inhibitory function but also participate in the regulation of other bacterial genes. The regulatory function of plasmid antirestriction genes also helps them to overcome the bacterial cell protection against gene transfer, whereas the regulatory function of genomic antirestrictases has no such effect.

2.
Dokl Biol Sci ; 513(1): 368-373, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37700103

ABSTRACT

A morphological description is provided for a unique find of a frozen mummified subfossil brown bear (Ursus arctos L., 1758), found for the first time ever. The find is a well-preserved bear carcass of approximately 3500 years in age. Results of computed tomography and DNA testing are discussed.


Subject(s)
Ursidae , Animals , Ursidae/classification
3.
Acta Naturae ; 10(1): 66-74, 2018.
Article in English | MEDLINE | ID: mdl-29713520

ABSTRACT

Three-spine stickleback (Gasterosteus aculeatus) is a well-known model organism that is routinely used to explore microevolution processes and speciation, and the number of studies related to this fish has been growing recently. The main reason for the increased interest is the processes of freshwater adaptation taking place in natural populations of this species. Freshwater three-spined stickleback populations form when marine water three-spined sticklebacks fish start spending their entire lifecycle in freshwater lakes and streams. To boot, these freshwater populations acquire novel biological traits during their adaptation to a freshwater environment. The processes taking place in these populations are of great interest to evolutionary biologists. Here, we present differential gene expression profiling in G. aculeatus gills, which was performed in marine and freshwater populations of sticklebacks. In total, 2,982 differentially expressed genes between marine and freshwater populations were discovered. We assumed that differentially expressed genes were distributed not randomly along stickleback chromosomes and that they are regularly observed in the "divergence islands" that are responsible for stickleback freshwater adaptation.

4.
Sci Rep ; 7(1): 18089, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29273769

ABSTRACT

miRNAs play important role in the various physiological and evolutionary processes, however, there is no data allowing comparison of evolutionary differences between various ecotypes adapted to different environmental conditions and specimen demonstrating immediate physiological response to the environmental changes. We compared miRNA expression profiles between marine and freshwater stickleback populations of the three-spined stickleback to identify the evolutionary differences. To study the immediate physiological response to foreign environment, we explored the changes induced by transfer of marine sticklebacks into freshwater environment and vice versa. Comparative analysis of changes in miRNA expression suggested that they are driven by three independent factors: (1) non-specific changes in miRNA expression under different environmental conditions; (2) specific response to freshwater conditions in the marine stickleback ecotype; (3) specific response to extreme osmotic conditions for both marine and freshwater ecotypes during the contact with non-native environment. Gene Ontology enrichment analysis of differential expressed miRNA targets supports our current hypothesis.


Subject(s)
Adaptation, Physiological/genetics , Ecosystem , Fresh Water , MicroRNAs/genetics , Seawater , Smegmamorpha/genetics , Animals , Biological Evolution , Genetic Variation
5.
Genom Data ; 11: 87-88, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28066711

ABSTRACT

The vast majority of multicellular organisms coexist with bacterial symbionts that may play various roles during their life cycle. Parasitoid wasp Megaphragma amalphitanum (Hymenoptera: Trichogrammatidae) belongs to the smallest known insects whose size is comparable with some bacteria. Using 16S rRNA gene sequencing and Whole Genome Sequencing (WGS), we described microbiota diversity for this arthropod and its potential impact on their lifecycle. Metagenomic sequences were deposited to SRA database which is available at NCBI with accession number SRX2363723 and SRX2363724. We found that small body size and limited lifespan do not lead to a significant reduction of bacterial symbionts diversity. At the same time, we show here a specific feature of microbiota composition in M. amalphitanum - the absence of the Rickettsiaceae family representatives that are known to cause sex-ratio distortion in arthropods and well represented in other populations of parasitoid wasps.

6.
Mol Ecol Resour ; 16(6): 1491-1498, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27238497

ABSTRACT

The three-spined stickleback (Gasterosteus aculeatus L.) is an important model organism for studying the molecular mechanisms of speciation and adaptation to salinity. Despite increased interest to microRNA discovery and recent publication on microRNA prediction in the three-spined stickleback using bioinformatics approaches, there is still a lack of experimental support for these data. In this paper, high-throughput sequencing technology was applied to identify microRNA genes in gills of the three-spined stickleback. In total, 595 miRNA genes were discovered; half of them were predicted in previous computational studies and were confirmed here as microRNAs expressed in gill tissue. Moreover, 298 novel microRNA genes were identified. The presence of miRNA genes in selected 'divergence islands' was analysed and 10 miRNA genes were identified as not randomly located in 'divergence islands'. Regulatory regions of miRNA genes were found enriched with selective SNPs that may play a role in freshwater adaptation.


Subject(s)
Gills , MicroRNAs/analysis , Smegmamorpha/genetics , Animals , Ecotype , Fresh Water , High-Throughput Nucleotide Sequencing , MicroRNAs/classification , MicroRNAs/genetics , Seawater , Smegmamorpha/classification
7.
Acta Naturae ; 6(2): 31-5, 2014 Apr.
Article in English | MEDLINE | ID: mdl-25093108

ABSTRACT

The Novosvobodnaya culture is known as a Bronze Age archaeological culture in the North Caucasus region of Southern Russia. It dates back to the middle of the 4th millennium B.C. and seems to have occurred during the time of the Maikop culture. There are now two hypotheses about the emergence of the Novosvobodnaya culture. One hypothesis suggests that the Novosvobodnaya culture was a phase of the Maikop culture, whereas the other one classifies it as an independent event based on the material culture items found in graves. Comparison between Novosvobodnaya pottery and Funnelbeaker (TRB) pottery from Germany has allowed researchers to suggest that the Novosvobodnaya culture developed under the influence of Indo-European culture. Nevertheless, the origin of the Novosvobodnaya culture remains a matter of debate. We applied next-generation sequencing to study ~5000-year-old human remains from the Klady kurgan grave in Novosvobodnaya stanitsa (now the Republic of Adygea, Russia). A total of 58,771,105 reads were generated using Illumina GAIIx with a coverage depth of 13.4x over the mitochondrial (mt) DNA genome. The mtDNA haplogroup affiliation was determined as V7, suggesting a role of the TRB culture in the development of the Novosvobodnaya culture and supporting the model of sharing between Novosvobodnaya and early Indo-European cultures.

8.
Acta Naturae ; 2(3): 122-6, 2010 Jul.
Article in English | MEDLINE | ID: mdl-22649659

ABSTRACT

A somatic cell genome was recently resequenced for a patient with renal cancer. The data were submitted to the NCBI Sequence Read Archive under the accession number SRA012240. Here, we have performed SNP calling for the genome and compared it with several published genomes. We have found 2, 921, 724 SNPs, including 1, 472, 679 newly described ones. Among them, 63, 462 SNPs have been mapped to the Y chromosome and, based on 18 markers, the genome has been ascribed to the R1a1a haplogroup predominant in Russian males. The mitochondrial haplogroup has been determined as U5a, which is also common in the European part of Russia. Short reads unmapped to the human genome were used for thede novoassembly of DNA sequences. This resulted in genome-specific contigs (more than 100 bp in length) with an overall length of 154 kbp (for GAII) and 4.7 kbp (for SOLiD).

9.
Acta Naturae ; 1(3): 102-7, 2009 Oct.
Article in English | MEDLINE | ID: mdl-22649622

ABSTRACT

At present, the new technologies of DNA sequencing are rapidly developing allowing quick and efficient characterisation of organisms at the level of the genome structure. In this study, the whole genome sequencing of a human (Russian man) was performed using two technologies currently present on the market - Sequencing by Oligonucleotide Ligation and Detection (SOLiD™) (Applied Biosystems) and sequencing technologies of molecular clusters using fluorescently labeled precursors (Illumina). The total number of generated data resulted in 108.3 billion base pairs (60.2 billion from Illumina technology and 48.1 billion from SOLiD technology). Statistics performed on reads generated by GAII and SOLiD showed that they covered 75% and 96% of the genome respectively. Short polymorphic regions were detected with comparable accuracy however, the absolute amount of them revealed by SOLiD was several times less than by GAII. Optimal algorithm for using the latest methods of sequencing was established for the analysis of individual human genomes. The study is the first Russian effort towards whole human genome sequencing.

10.
Extremophiles ; 12(6): 819-27, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18769867

ABSTRACT

Gram-positive bacteria capable of nitrogen fixation were obtained in microoxic enrichments from soda soils in south-western Siberia, north-eastern Mongolia, and the Lybian desert (Egypt). The same organisms were obtained in anoxic enrichments with glucose from soda lake sediments in the Kulunda Steppe (Altai, Russia) using nitrogen-free alkaline medium of pH 10. The isolates were represented by thin motile rods forming terminal round endospores. They are strictly fermentative saccharolytic anaerobes but tolerate high oxygen concentrations, probably due to a high catalase activity. All of the strains are obligately alkaliphilic and highly salt-tolerant natronophiles (chloride-independent sodaphiles). Growth was possible within a pH range from 7.5 to 10.6, with an optimum at 9.5-10, and within a salt range from 0.2 to 4 M Na(+), with an optimum at 0.5-1.5 M for the different strains. The nitrogenase activity in the whole cells also had an alkaline pH optimum but was much more sensitive to high salt concentrations compared to the growing cells. The isolates formed a compact genetic group with a high level of DNA similarity. Phylogenetic analysis based on 16S-rRNA gene sequences placed the isolates into Bacillus rRNA group 1 as a separate lineage with Amphibacillus tropicus as the nearest relative. In all isolates the key functional nitrogenase gene nifH was detected. A new genus and species, Natronobacillus azotifigens gen. nov., sp. nov., is proposed to accommodate the novel diazotrophic haloalkaliphiles.


Subject(s)
Natronobacterium/metabolism , Hydrogen-Ion Concentration , Microscopy, Electron , Natronobacterium/classification , Natronobacterium/genetics , Natronobacterium/isolation & purification , Nitrogen Fixation , Phylogeny , RNA, Ribosomal, 16S/genetics
11.
Int J Syst Bacteriol ; 48 Pt 4: 1313-21, 1998 Oct.
Article in English | MEDLINE | ID: mdl-9828432

ABSTRACT

A new genus, Methylopila, and one new species are described for a group of seven strains of facultatively methylotrophic bacteria with the serine pathway of C1 assimilation. These bacteria are aerobic, Gram-negative, non-spore--forming, motile, colourless rods that multiply by binary fission. Their DNA base content ranges from 66 to 70 mol % G + C. Their cellular fatty acid profile consists primarily of C18:1 omega 7 cis-vaccenic and C19:0 cyclopropane acids. The major hydroxy acid is 3-OH C14:0. The main ubiquinone is Q-10. The dominant cellular phospholipids are phosphatidylethanolamine and phosphatidylcholine. The new isolates have a low level of DNA-DNA homology (5-10%) with the type strains of the serine pathway methylobacteria belonging to the genera Methylobacterium, Aminobacter, Hyphomicrobium and Methylorhabdus. Another approach, involving 16S rRNA gene sequence analysis of strain IM1T, has shown that the new isolates represent a separate branch within the alpha-2 subclass of the Proteobacteria. The type species of the new genus is Methylopila capsulata sp. nov., with the type strain IM1T (= VKM B-1606T).


Subject(s)
Gram-Negative Aerobic Bacteria/classification , Gram-Negative Aerobic Bacteria/isolation & purification , Soil Microbiology , Base Composition , DNA, Bacterial/chemistry , Fatty Acids/analysis , Genes, rRNA , Gram-Negative Aerobic Bacteria/genetics , Gram-Negative Aerobic Bacteria/physiology , Molecular Sequence Data , Nucleic Acid Hybridization , Phospholipids/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Serine/metabolism , Terminology as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...