Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Gen Virol ; 99(9): 1286-1300, 2018 09.
Article in English | MEDLINE | ID: mdl-30067174

ABSTRACT

Herpesviruses have a lifecycle consisting of successive lytic, latent and reactivation phases. Only three infected cell proteins (ICPs) have been described for the oncogenic Marek's disease virus (or Gallid herpes virus 2, GaHV-2): ICP4, ICP22 and ICP27. We focus here on ICP22, confirming its cytoplasmic location and showing that ICP22 is expressed during productive phases of the lifecycle, via a bicistronic transcript encompassing the US10 gene. We also identified the unique promoter controlling ICP22 expression, and its core promoter, containing functional responsive elements including E-box, ETS-1 and GATA elements involved in ICP22 transactivation. ICP22 gene expression was weakly regulated by DNA methylation and activated by ICP4 or ICP27 proteins. We also investigated the function of GaHV-2 ICP22. We found that this protein repressed transcription from its own promoter and from those of IE ICP4 and ICP27, and the late gK promoter. Finally, we investigated posttranscriptional ICP22 regulation by GaHV-2 microRNAs. We found that mdv1-miR-M5-3p and -M1-5p downregulated ICP22 mRNA expression during latency, whereas, unexpectedly, mdv1-miR-M4-5p upregulated the expression of the protein ICP22, indicating a tight regulation of ICP22 expression by microRNAs.


Subject(s)
Gene Expression Regulation, Viral/physiology , Herpesvirus 2, Gallid/physiology , Viral Proteins/metabolism , Animals , Cell Line , Chickens , DNA Methylation , Promoter Regions, Genetic , Response Elements , Viral Proteins/genetics , Virus Replication
2.
J Gen Virol ; 99(3): 355-368, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29458534

ABSTRACT

Transcriptional and post-transcriptional mechanisms are involved in the switch between the lytic, latent and reactivation phases of the viral cycle in herpesviruses. During the productive phases, herpesvirus gene expression is characterized by a temporally regulated cascade of immediate early (IE), early (E) and late (L) genes. In alphaherpesviruses, the major product of the IE ICP4 gene is a transcriptional regulator that initiates the cascade of gene expression that is essential for viral replication. In this study, we redefine the infected cell protein 4 (ICP4) gene of the oncogenic Marek's disease virus (MDV or gallid herpesvirus 2) as a 9438 nt gene ended with four alternative poly(A) signals and controlled by two alternative promoters containing essentially ubiquitous functional response elements (GC, TATA and CCAAT boxes). The distal promoter is associated with ICP4 gene expression during the lytic and the latent phases, whereas the proximal promoter is associated with the expression of this gene during the reactivation phase. Both promoters are regulated by DNA methylation during the viral cycle and are hypermethylated during latency. Transcript analyses showed ICP4 to consist of three exons and two introns, the alternative splicing of which is associated with five predicted nested ICP4ORFs. We show that the ICP4 gene is highly and specifically regulated by transcriptional and post-transcriptional mechanisms during the three phases of the GaHV-2 viral cycle, with a clear difference in expression between the lytic phase and reactivation from latency in our model.

3.
J Gen Virol ; 97(11): 2973-2988, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27655063

ABSTRACT

Marek's disease virus, or Gallid herpesvirus 2 (GaHV-2), is an avian alphaherpesvirus that induces T-cell lymphoma in chickens. During transcriptomic studies of the RL region of the genome, we characterized the 7.5 kbp gene of the ERL lncRNA (edited repeat-long, long non-coding RNA), which may act as a natural antisense transcript (NAT) of the major GaHV-2 oncogene meq and of two of the three miRNA clusters. During infections in vivo and in vitro, we detected hyperediting of the ERL lncRNA that appeared to be directly correlated with ADAR1 expression levels. The ERL lncRNA was expressed equally during the lytic and latent phases of infection and during viral reactivation, but its hyperediting increased only during the lytic infection of chicken embryo fibroblasts. We also showed that chicken ADAR1 expression was controlled by the JAK/STAT IFN-response pathway, through an inducible promoter containing IFN-stimulated response elements that were functional during stimulation with IFN-α or poly(I:C). Like the human and murine miR-155-5p, the chicken gga-miR-155-5p and the GaHV-2 analogue mdv1-miR-M4-5p deregulated this pathway by targeting and repressing expression of suppressor of cytokine signalling 1, leading to the upregulation of ADAR1. Finally, we hypothesized that the natural antisense transcript role of the ERL lncRNA could be disrupted by its hyperediting, particularly during viral lytic replication, and that the observed deregulation of the innate immune system by mdv1-miR-M4-5p might contribute to the viral cycle.


Subject(s)
Adenosine Deaminase/metabolism , Herpesvirus 2, Gallid/genetics , Marek Disease/enzymology , Marek Disease/virology , Oncogenic Viruses/genetics , RNA, Long Noncoding/genetics , RNA, Viral/genetics , Adenosine Deaminase/genetics , Animals , Chickens , Fibroblasts/enzymology , Fibroblasts/metabolism , Fibroblasts/virology , Gene Expression Regulation, Viral , Herpesvirus 2, Gallid/physiology , Marek Disease/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Oncogenic Viruses/physiology , Promoter Regions, Genetic , RNA Editing , RNA, Long Noncoding/metabolism , RNA, Viral/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...