Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 141: 105796, 2023 05.
Article in English | MEDLINE | ID: mdl-36965217

ABSTRACT

In the last decade, the development of customized biodegradable scaffolds and implants has attracted increased scientific interest due to the fact that additive manufacturing technologies allow for the rapid production of implants with high geometric complexity constructed via commercial biodegradable polymers. In this study, innovative designs of tibial scaffold in form of bone-brick configuration were developed to fill the bone gap utilizing advanced architected materials and bio-inspired diffusion canals. The architected materials and canals provide high porosity, as well as a high surface area to volume ratio in the scaffold facilitating that way in the tissue regeneration process and in withstanding the applied external loads. The cellular structures applied in this work were the Schwarz Diamond (SD) and a hybrid SD&FCC hybrid cellular material, which is a completely new architected material that derived from the combination of SD and Face Centered Cubic (FCC) structures. These designs were additively manufactured utilizing two biodegradable materials namely Polylactic acid (PLA) and Polycaprolactone (PCL), using the Fused Filament Fabrication (FFF) technique, in order to avoid the surgery, for the scaffold's removal after the bone regeneration. Furthermore, the additively manufactured scaffolds were examined in terms of compatibility and assembly with the bone's physical model, as well as, in terms of mechanical behavior under realistic static loads. In addition, non-linear finite element models (FEMs) were developed based on the experimental data to accurately simulate the mechanical response of the examined scaffolds. The Finite Element Analysis (FEA) results were compared with the experimental response and afterwards the stress concentration regions were observed and identified. Τhe proposed design of scaffold with SD&FCC lattice structure made of PLA material with a relative density of 20% revealed the best overall performance, showing that it is the most suitable candidate for further investigation (in-vivo test, clinical trials, etc.) and commercialization.


Subject(s)
Polyesters , Tissue Scaffolds , Tissue Scaffolds/chemistry , Polyesters/chemistry , Bone and Bones , Polymers/chemistry , Porosity
2.
Langmuir ; 38(32): 9810-9821, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35786927

ABSTRACT

This study aims to provide insights into biofilm resistance associated with their structural properties acquired during formation and development. On this account, the wetting and imbibition behavior of dehydrated Pseudomonas fluorescens biofilms grown on stainless steel electropolished substrates is thoroughly examined at different biofilm ages. A polar liquid (water) and a non-polar liquid (diiodomethane) are employed as wetting agents in the form of sessile droplets. A mathematical model is applied to appraise the wetting and imbibition performance of biofilms incorporating the evaporation of sessile droplets. The present results show that the examined biofilms are hydrophilic. The progressive growth of biofilms leads to a gradual increase of substrate surface coverage─up to full coverage─accompanied by a gradual decrease of biofilm surface roughness. It is noteworthy that just after 24 h of biofilm growth, the surface roughness increases about 6.7 times the roughness of the clean stainless steel surface. It is further found that the imbibition of liquid in the biofilm matrix is restricted only to the biofilm region under the sessile droplet. The lack of further capillary imbibition into the biofilm structure, beyond the droplet deposition region, implies that the biofilm matrix is not in the form of an extended network of interconnected micro/nanopores. All in all, the present results indicate a resilient biofilm structure to biocide penetration despite its hydrophilic nature.


Subject(s)
Disinfectants , Pseudomonas fluorescens , Biofilms , Stainless Steel/chemistry , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL
...