Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 61(32): 12870-12885, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35913056

ABSTRACT

High-capacity solid-state batteries are promising future products for large-scale energy storage and conversion. Sodium fast ion conductors including glasses and glass ceramics are unparalleled materials for these applications. Rational design and tuning of advanced sodium sulfide electrolytes need a deep insight into the atomic structure and dynamics in relation with ion-transport properties. Using pulsed neutron diffraction and Raman spectroscopy supported by first-principles simulations, we show that preferential diffusion pathways in vitreous sodium and silver sulfides are related to isolated sulfur Siso, that is, the sulfur species surrounded exclusively by mobile cations with a typical stoichiometry of M/Siso ≈ 2. The Siso/Stot fraction appears to be a reliable descriptor of fast ion transport in glassy sulfide systems over a wide range of ionic conductivities and cation diffusivities. The Siso fraction increases with mobile cation content x, tetrahedral coordination of the network former and, in case of thiogermanate systems, with germanium disulfide metastability and partial disproportionation, GeS2 → GeS + S, leading to the formation of additional sulfur, transforming into Siso. A research strategy enabling to achieve extended and interconnected pathways based on isolated sulfur would lead to glassy electrolytes with superior ionic diffusion.

2.
Inorg Chem ; 59(22): 16410-16420, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33104333

ABSTRACT

Sodium-conducting sulfide glasses are promising materials for the next generation of solid-state batteries. Deep insight into the glass structure is required to ensure a functional design and tailoring of vitreous alloys for energy applications. Using pulsed neutron diffraction supported by first-principles molecular dynamics, we show a structural diversity of Na2S-As2S3 sodium thioarsenate glasses, consisting of long corner-sharing (CS) pyramidal chains CS-(AsSS2/2)k, small AspSq rings (p + q ≤ 11), mixed corner- and edge-sharing oligomers, edge-sharing (ES) dimers ES-As2S4, and isolated (ISO) pyramids ISO-AsS3, entirely or partially connected by sodium species. Polysulfide S-S bridges and structural units with homopolar As-As bonds complete the glass structure, which is basically different from structural motifs predicted by the equilibrium phase diagram. In contrast to superionic silver and sodium sulfide glasses, characterized by a significant population of isolated sulfur species Siso (0.20 < Siso/Stot < 0.28), that is, sulfur connected to only mobile cations M+ with a usual M/Siso stoichiometry of 2, poorly conducting Na2S-As2S3 alloys exhibit a modest Siso fraction of 6.2%.

SELECTION OF CITATIONS
SEARCH DETAIL
...