Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36365507

ABSTRACT

This work focuses on the extrusion foaming under CO2 of commercial TPV and how the process influences the final morphology of the foam. Moreover, numerical modelling of the cell growth of the extrusion foaming is developed. The results show how a precise control on the saturation pressure, die geometry, temperature and nucleation can provide a homogeneous foam having a low density (<500 kg/m3). This work demonstrates that an optimum of CO2 content must be determined to control the coalescence phenomenon that appears for high levels of CO2. This is explained by longer residence times in the die (time of growth under confinement) and an early nucleation (expansion on the die destabilizes the polymer flow). Finally, this work proposes a model to predict the influence of CO2 on the flow (plasticizing effect) and a global model to simulate the extrusion process and foaming inside and outside the die. For well-chosen nucleation parameters, the model predicts the final mean radius of the cell foam as well as final foam density.

2.
Polymers (Basel) ; 14(11)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35683944

ABSTRACT

Herein, we reported the synthesis of TiO2 through different non-hydrolytic sol-gel (NHSG) routes in viscous polymer media. For the first time, the influence of the polymer nature (Polystyrene (PS) or Polypropylene (PP)) on the morphology of synthesized inorganic domains was investigated. The non-hydrolytic sol-gel reactions between titanium isopropoxide Ti(OiPr)4 and acetic anhydride in molten polypropylene lead to the formation of microfillers with a mean diameter of about 1 µm, while the same synthesis carried out in viscous polystyrene lead to the formation of nanofillers with diameter lower than 10 nm forming aggregates of approximately 200 nm. We have also investigated the influence of the oxygen donor nature on the morphology of synthesized fillers using aromatic oxygen donors in a polystyrene matrix. The use of benzoic anhydride or acetophenone as oxygen donors with Ti(OiPr)4 in viscous polystyrene lead to respectively platelet-like morphology or aggregated nanofillers. We demonstrated that the affinity between polymer, reactants, and/or by-products had an influence on the morphology and the size of in situ synthesized TiO2 fillers. These results evidenced for the first time the possibility to control and to tune the morphology of in situ grown inorganic objects through the NHSG process by the appropriate choice of solvent, here a viscous polymer medium, and reactants.

3.
Polymers (Basel) ; 13(18)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34578061

ABSTRACT

The objective of this study was to replace elastomer crosslinking based on chemical covalent bonds by reversible systems under processing. One way is based on ionic bonds creation, which allows a physical crosslinking while keeping the process reversibility. However, due to the weak elasticity recovery of such a physical network after a long period of compression, the combination of both physical and chemical networks was studied. In that frame, an ethylene-propylene-diene terpolymer grafted with maleic anhydride (EPDM-g-MA) was crosslinked with metal salts and/or dicumyl peroxide (DCP). Thus, the influence of these two types of crosslinking networks and their combination were studied in detail in terms of compression set. The second part of this work was focused on the influence of different metallic salts (KOH, ZnAc2) and the sensitivity to the water of the physical crosslinking network. Finally, the combination of ionic and covalent network allowed combining the processability and better mechanical properties in terms of recovery elasticity. KAc proved to be the best ionic candidate to avoid water degradation of the ionic network and then to preserve the elasticity recovery properties under aging.

4.
Polymers (Basel) ; 12(10)2020 Oct 10.
Article in English | MEDLINE | ID: mdl-33050464

ABSTRACT

The objective of this work is to study the influence of the ratio between the elastomer (EPDM) phase and the thermoplastic phase (PP) in thermoplastic vulcanizates (TPVs) as well as the associated morphology of the compression set of the material. First, from a study of the literature, it is concluded that the rubber phase must be dispersed with a large distribution of the domain size in the thermoplastic phase in order to achieve a high concentration, i.e., a maximal packing fraction close to ~0.80. From this discussion, it is inferred that a certain degree of progress in the crosslinking reaction must be reached when the thermoplastic phase is melted during mixing in order to achieve dispersion of the elastomeric phase in the thermoplastic matrix under maximum stress. In terms of elasticity recovery which is measured from the compression set experiment, it is observed that the crosslinking agent nature (DCP or phenolic resin) has no influence in the case of a TPV compared with a pure crosslinked EPDM system. Then, the TPV morphology and the rubber phase concentration are the first order parameters in the compression set of TPVs. Finally, the addition of carbon black fillers leads to an improvement of the mechanical properties at break for the low PP concentration (20%). However, the localization of carbon black depends on the crosslinking chemistry nature. With radical chemistry by organic peroxide decomposition, carbon black is located at the interface of EPDM and PP acting as a compatibilizer.

5.
Sci Rep ; 5: 8369, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25666949

ABSTRACT

The physical modification of glass transition temperature (T(g)) and properties of materials via blending is a common practice in industry and academia and has a large economic advantage. In this context, simple production of hitherto unattainable new inorganic glass blends from already existing glass compositions via blending raises much hope with the potential to provide new glasses with new and improved properties, that cannot be achieved with classical glass synthesis, for a plethora of applications such as computers screens, glass-to-metal seals, and storage materials for nuclear wastes. Here, we demonstrate that blends of the specific glass compositions studied are miscible in all proportions, an unreported phenomenon in hard condensed matter like glass. Interestingly, excellent agreement was found between the obtained data and calculated Tgs from theoretical equations (Supplementary information) for predicting the composition dependence of T(g) for miscible blends with weak but significant specific interactions between the blend components. That this blending method is at present not applied to inorganic glasses reflects the fact that water and chemically resistant phosphate glasses with relatively low T(g)s have become available only recently.

SELECTION OF CITATIONS
SEARCH DETAIL
...