Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(37): eabo2397, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36112687

ABSTRACT

Recent thermodynamic and experimental studies have suggested that volatile organic compounds (e.g., methane, formate, and acetate) can be produced and stabilized in subduction zones, potentially playing an important role in the deep carbon cycle. However, field evidence for the high-pressure production and storage of solid organic compounds is missing. Here, we examine forearc serpentinite clasts recovered by drilling mud volcanoes above the Mariana subduction zone. Notable correlations between carbon and iron stable-isotope signatures and fluid-mobile element (B, As and Sb) concentrations provide evidence for the percolation of slab-derived CO2-rich aqueous fluids through the forearc mantle. The presence of carbonaceous matter rich in aliphatic moieties within high-temperature clasts (>350°C) demonstrates that molecular hydrogen production associated with forearc serpentinization is an efficient mechanism for the reduction and conversion of slab-derived CO2-rich fluids into solid organic compounds. These findings emphasize the need to consider the forearc mantle as an important reservoir of organic carbon on Earth.

2.
J Environ Radioact ; 160: 123-34, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27176109

ABSTRACT

Effective radium-226 activity concentration (ECRa), the radon-222 source term, was measured in the laboratory with 724 topsoil samples collected over a ∼110 km(2) area located ∼20 km south of Paris, France. More than 2100 radon accumulation experiments were performed, with radon concentration measured using scintillation flasks, leading to relative uncertainties on ECRa varying from 10% for ECRa = 2 Bq⋅kg(-1) to less than 6% for ECRa > 5 Bq⋅kg(-1). Small-scale dispersion, studied at one location with 12 samples, and systematically at 100 locations with three topsoils separated by 1 m, was of the order of 7%, demonstrating that a single soil sample is reasonably representative. Agricultural topsoils (n = 540) had an average (arithmetic) ECRa of 8.09 ± 0.11 Bq⋅kg(-1), and a range from 2.80 ± 0.22 to 19.5 ± 1.1 Bq⋅kg(-1), while forest topsoils (n = 184), with an average of 3.21 ± 0.14 Bq⋅kg(-1) and a range from 0.45 ± 0.12 to 9.09 ± 0.55 Bq⋅kg(-1), showed a clear systematic reduction of ECRa when compared with the closest agricultural soil sample. Large-scale organization of ECRa was impressive for agricultural topsoils, with homogeneous domains of several kilometers size, characterized by smooth variations smaller than 10%. These patches emerged despite heavy human remodeling; they are controlled by the main geographical units, but do not necessarily coincide with them. Valleys were characterized by larger dispersion and less organization. This study illustrates how biosphere and anthroposphere modify the soil distribution inherited from geological processes, an important baseline needed for the study of contaminated sites. Furthermore, the observed depletion of forest topsoils suggests an atmospheric radon signature of deforestation.


Subject(s)
Radium/analysis , Soil Pollutants, Radioactive/analysis , Agriculture , Forests , France , Radiation Monitoring , Soil/chemistry
3.
J Environ Radioact ; 157: 52-9, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26998570

ABSTRACT

Measuring radium-226 concentration in liquid samples using radon-222 emanation remains competitive with techniques such as liquid scintillation, alpha or mass spectrometry. Indeed, we show that high-precision can be obtained without air circulation, using an optimal air to liquid volume ratio and moderate heating. Cost-effective and efficient measurement of radon concentration is achieved by scintillation flasks and sufficiently long counting times for signal and background. More than 400 such measurements were performed, including 39 dilution experiments, a successful blind measurement of six reference test solutions, and more than 110 repeated measurements. Under optimal conditions, uncertainties reach 5% for an activity concentration of 100 mBq L(-1) and 10% for 10 mBq L(-1). While the theoretical detection limit predicted by Monte Carlo simulation is around 3 mBq L(-1), a conservative experimental estimate is rather 5 mBq L(-1), corresponding to 0.14 fg g(-1). The method was applied to 47 natural waters, 51 commercial waters, and 17 wine samples, illustrating that it could be an option for liquids that cannot be easily measured by other methods. Counting of scintillation flasks can be done in remote locations in absence of electricity supply, using a solar panel. Thus, this portable method, which has demonstrated sufficient accuracy for numerous natural liquids, could be useful in geological and environmental problems, with the additional benefit that it can be applied in isolated locations and in circumstances when samples cannot be transported.


Subject(s)
Radiation Monitoring/methods , Radium/analysis , Radon/analysis , Water Pollutants, Radioactive/analysis , Drinking Water/analysis , Groundwater/analysis , Mineral Waters/analysis , Wine/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...