Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Geochem Geophys Geosyst ; 19(3): 582-594, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29937698

ABSTRACT

Scanning precession electron diffraction is an emerging promising technique for mapping phases and crystal orientations with short acquisition times (10-20 ms/pixel) in a transmission electron microscope similarly to the Electron Backscattered Diffraction (EBSD) or Transmission Kikuchi Diffraction (TKD) techniques in a scanning electron microscope. In this study, we apply this technique to the characterization of deformation microstructures in an aggregate of bridgmanite and ferropericlase deformed at 27 GPa and 2,130 K. Such a sample is challenging for microstructural characterization for two reasons: (i) the bridgmanite is very unstable under electron irradiation, (ii) under high stress conditions, the dislocation density is so large that standard characterization by diffraction contrast are limited, or impossible. Here we show that detailed analysis of intracrystalline misorientations sheds some light on the deformation mechanisms of both phases. In bridgmanite, deformation is accommodated by localized, amorphous, shear deformation lamellae whereas ferropericlase undergoes large strains leading to grain elongation in response to intense dislocation activity with no evidence for recrystallization. Plastic strain in ferropericlase can be semiquantitatively assessed by following kernel average misorientation distributions.

2.
Bioorg Med Chem Lett ; 11(2): 127-32, 2001 Jan 22.
Article in English | MEDLINE | ID: mdl-11206442

ABSTRACT

A novel series of 2- and 9-disubstituted heterocyclic-fused 4-oxo-indeno[1,2-e]pyrazin derivatives was synthesized. One of them, the 9-(1H-tetrazol-5-ylmethyl)-4-oxo-5,10-dihydroimidazo[1,2-a]indeno[1,2-e]pyrazin-2-yl phosphonic acid 4i exhibited a strong and a selective binding affinity for the AMPA receptor (IC50 = 13 nM) and demonstrated potent antagonist activity (IC50 = 6nM) at the ionotropic AMPA receptor. This compound also displayed good anticonvulsant properties against electrically-induced convulsions after ip and iv administration with ED50 values between 0.8 and 1 mg/kg. Furthermore, a strong increase in potency was observed when given iv 3 h before test (ED50 = 3.5 instead of 25.6 mg/kg for the corresponding 9-carboxymethyl-2-carboxylic acid analogue). These data confirmed that there is an advantage in replacing the classical carboxy substituents by their bioisosteres such as tetrazole or phosphonic acid groups.


Subject(s)
Excitatory Amino Acid Antagonists/chemical synthesis , Excitatory Amino Acid Antagonists/pharmacology , Pyrazinamide/pharmacology , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/antagonists & inhibitors , Animals , Anticonvulsants/chemical synthesis , Anticonvulsants/pharmacology , Combinatorial Chemistry Techniques , Disease Models, Animal , Excitatory Amino Acid Antagonists/chemistry , Imidazoles/chemical synthesis , Imidazoles/pharmacology , Inhibitory Concentration 50 , Male , Mice , Oocytes/drug effects , Pyrazinamide/analogs & derivatives , Pyrazinamide/chemical synthesis , Pyrazinamide/chemistry , Pyrazines/chemical synthesis , Pyrazines/pharmacology , Receptors, AMPA/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Seizures/chemically induced , Seizures/drug therapy , Seizures/prevention & control , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...