Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Reports ; 17(10): 2203-2219, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36150382

ABSTRACT

We have developed an efficient approach to generate functional induced dopaminergic (DA) neurons from adult human dermal fibroblasts. When performing DA neuronal conversion of patient fibroblasts with idiopathic Parkinson's disease (PD), we could specifically detect disease-relevant pathology in these cells. We show that the patient-derived neurons maintain age-related properties of the donor and exhibit lower basal chaperone-mediated autophagy compared with healthy donors. Furthermore, stress-induced autophagy resulted in an age-dependent accumulation of macroautophagic structures. Finally, we show that these impairments in patient-derived DA neurons leads to an accumulation of phosphorylated alpha-synuclein, the classical hallmark of PD pathology. This pathological phenotype is absent in neurons generated from induced pluripotent stem cells from the same patients. Taken together, our results show that direct neural reprogramming can be used for obtaining patient-derived DA neurons, which uniquely function as a cellular model to study age-related pathology relevant to idiopathic PD.


Subject(s)
Induced Pluripotent Stem Cells , Parkinson Disease , Adult , Autophagy/physiology , Dopaminergic Neurons/pathology , Humans , Induced Pluripotent Stem Cells/pathology , Parkinson Disease/genetics , alpha-Synuclein/genetics
2.
Cell Reprogram ; 24(5): 228-251, 2022 10.
Article in English | MEDLINE | ID: mdl-35749150

ABSTRACT

Understanding the pathophysiology of CNS-associated neurological diseases has been hampered by the inaccessibility of patient brain tissue to perform live analyses at the molecular level. To this end, neural cells obtained by differentiation of patient-derived induced pluripotent stem cells (iPSCs) are considerably helpful, especially in the context of monogenic-based disorders. More recently, the use of direct reprogramming to convert somatic cells to neural cells has emerged as an alternative to iPSCs to generate neurons, astrocytes, and oligodendrocytes. This review focuses on the different studies that used direct neural reprogramming to study disease-associated phenotypes in the context of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.


Subject(s)
Induced Pluripotent Stem Cells , Neurodegenerative Diseases , Astrocytes , Cell Differentiation , Cellular Reprogramming , Humans , Neurons
SELECTION OF CITATIONS
SEARCH DETAIL
...