Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 12(23)2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31783523

ABSTRACT

Polymeric microparticles were produced following a three-step procedure involving (i) the production of an aqueous nanoemulsion of tri and monofunctional acrylate-based monomers droplets by an elongational-flow microemulsifier, (ii) the production of a nanosuspension upon the continuous-flow UV-initiated miniemulsion polymerization of the above nanoemulsion and (iii) the production of core-shell polymeric microparticles by means of a microfluidic capillaries-based double droplets generator; the core phase was composed of the above nanosuspension admixed with a water-soluble monomer and gold salt, the shell phase comprised a trifunctional monomer, diethylene glycol and a silver salt; both phases were photopolymerized on-the-fly upon droplet formation. Resulting microparticles were extensively analyzed by energy dispersive X-rays spectrometry and scanning electron microscopy to reveal the core-shell morphology, the presence of silver nanoparticles in the shell, organic nanoparticles in the core but failed to reveal the presence of the gold nanoparticles in the core presumably due to their too small size (c.a. 2.5 nm). Nevertheless, the reddish appearance of the as such prepared polymer microparticles emphasized that this three-step procedure allowed the easy elaboration of composite/hybrid multi-scale and multi-domain polymeric microparticles.

2.
Acta Biomater ; 66: 200-212, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29129788

ABSTRACT

Polymeric nanoparticles (PNPs) are gaining increasing importance as nanocarriers or contrasting material for preclinical diagnosis by micro-CT scanner. Here, we investigated a straightforward approach to produce a biocompatible, radiopaque, and stable polymer-based nanoparticle contrast agent, which was evaluated on mice. To this end, we used a nanoprecipitation dropping technique to obtain PEGylated PNPs from a preformed iodinated homopolymer, poly(MAOTIB), synthesized by radical polymerization of 2-methacryloyloxyethyl(2,3,5-triiodobenzoate) monomer (MAOTIB). The process developed allows an accurate control of the nanoparticle properties (mean size can range from 140 nm to 200 nm, tuned according to the formulation parameters) along with unprecedented important X-ray attenuation properties (concentration of iodine around 59 mg I/mL) compatible with a follow-up in vivo study. Routine characterizations such as FTIR, DSC, GPC, TGA, 1H and 13C NMR, and finally SEM were accomplished to obtain the main properties of the optimal contrast agent. Owing to excellent colloidal stability against physiological conditions evaluated in the presence of fetal bovine serum, the selected PNPs suspension was administered to mice. Monitoring and quantification by micro-CT showed that iodinated PNPs are endowed strong X-ray attenuation capacity toward blood pool and underwent a rapid and passive accumulation in the liver and spleen. STATEMENT OF SIGNIFICANCE: The design of X-ray contrast agents for preclinical imaging is still highly challenging. To date, the best contrast agents reported are based on iodinated lipids or inorganic materials such as gold. In literature, several attempts were undertaken to create polymer-based X-ray contrast agents, but their applicability in vivo was limited to their low contrasting properties. Polymer-based contrast agents present the advantages of an easy surface modification for future application in targeting. Herein, we develop a novel approach to design polymer-based nanoparticle X-ray contrast agent (polymerization of a highly iodine-loaded monomer (MAOTIB)), leading to an iodine concentration of 59 mg/mL. We showed their high efficiency in vivo in mice, in terms of providing a strong signal in blood and then accumulating in the liver and spleen.


Subject(s)
Contrast Media/chemistry , Methacrylates/chemistry , Nanoparticles/chemistry , Triiodobenzoic Acids/chemistry , X-Ray Microtomography , Animals , Cell Line, Tumor , Cell Survival , Chemical Precipitation , Colloids/chemistry , Dynamic Light Scattering , Hydrodynamics , Methacrylates/chemical synthesis , Mice , Spectroscopy, Fourier Transform Infrared , Surface-Active Agents/chemistry , Thermogravimetry , Triiodobenzoic Acids/chemical synthesis , X-Rays
3.
Nanotechnology ; 21(1): 015605, 2010 Jan 08.
Article in English | MEDLINE | ID: mdl-19946165

ABSTRACT

Tri(propylene glycol) diacrylate (TPGDA) was found to be an excellent monomer for the stabilization and dispersion of inorganic nanoparticles. Uniform nano-Au/poly(TPGDA) and nano-ZnO/poly(TPGDA) composite microbeads were synthesized in situ using a designed axisymmetric capillary-based flow-focusing microfluidic device without any additional surfactant or coupling agent. Using the designed mixing-enhanced microfluidic device, homogeneous nano-inorganic/polymer composites with a high content of nanoparticles were obtained. Morphologies of the composites were characterized by SEM, TEM, surface microscopy, dark-field microscopy and internal fluorescence.

4.
Lab Chip ; 9(20): 3007-11, 2009 Oct 21.
Article in English | MEDLINE | ID: mdl-19789758

ABSTRACT

An easy assembling-disassembling co-axial capillaries microfluidic device was built up for the production of double droplets. Uniform polymer core-polymer shell particles were synthesized by polymerizing the two immiscible monomer phases composing the double droplet. Thus poly(acrylamide) core-poly(tri(propylene glycol) diacrylate) shell particles with controlled core diameter and shell thickness were simply obtained by adjusting operating parameters. An empirical law was extracted from experiments to predict core and shell sizes. Additionally uniform and predictable non-spherical polymer objects were also prepared without adding shape-formation procedures in the experimental device. An empirical equation for describing the lengths of rod-like polymer particles is also presented.

5.
Langmuir ; 23(14): 7745-50, 2007 Jul 03.
Article in English | MEDLINE | ID: mdl-17530868

ABSTRACT

Monodisperse and size-controlled spherical polymer particles were synthesized by in situ photopolymerization of O/W monomer emulsions. Monomer droplets were produced without surfactant or pretreatment at a needle tip in a simplified axisymmetric microfluidic device. The effect of the viscosity of the continuous phase on the particle size was studied. The system operated in the dripping mode, at a low Reynolds number. A dimensionless master curve describes the particle diameter as a function of the needle inner diameter as well as velocity and viscosity ratios of continuous and dispersed phases. An empirical law predicts the particle size. The normalized particle diameter depends upon the ratio of the capillary numbers of continuous and dispersed phases with an exponent equal to -0.22.

SELECTION OF CITATIONS
SEARCH DETAIL
...