Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 59(12): 3706-3713, 2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32400496

ABSTRACT

We report on the measurement of the transmittance and reflectance of unpolarized light (425-700 nm) in three birefringent, acousto-optic materials, including quartz, lithium niobate, and tellurium dioxide, after exposure to varying fluences of proton radiation ($ {10^{14}} {-} {10^{18}}\;{\rm protons}/{{\rm cm}^2} $1014-1018protons/cm2) delivered by a 10 keV hydrogen ion beamline. We observe a general monotonic decrease in transmittance with increasing fluence for all three materials, but with varying rates of change and critical points of change. Reflectance measurements also exhibit a general monotonic trend with fluence, but increases in quartz are observed versus decreases in both lithium niobate and tellurium dioxide. These observations are used to assess the suitability of the materials for acousto-optic applications in the space environment where charged particles from the solar wind are dominant and pose a threat to device operation. Our measurements agree with previously reported work concluding that tellurium dioxide is suitable for space applications at low fluences (below $ {{10}^{16}}\;{\rm ions}/{{\rm cm}^2} $1016ions/cm2), but our findings also raise previously unreported concerns for higher accumulated fluences observed for longer mission lifetimes of greater than five to 10 years in space in an unshielded configuration.

2.
Science ; 339(6120): 647, 2013 Feb 08.
Article in English | MEDLINE | ID: mdl-23393248

ABSTRACT

Fromm et al. and Vernier et al. suggest that their analyses of satellite measurements indicate that the main part of the Nabro volcanic plume from the eruption on 13 June 2011 was directly injected into the stratosphere. We address these analyses and, in addition, show that both wind trajectories and height-resolved profiles of sulfur dioxide indicate that although the eruption column may have extended higher than the Smithsonian report we highlighted, it was overwhelmingly tropospheric. Additionally, the height-resolved sulfur dioxide profiles provide further convincing evidence for convective transport of volcanic gas to the stratosphere from deep convection associated with the Asian monsoon.

3.
Science ; 337(6090): 78-81, 2012 Jul 06.
Article in English | MEDLINE | ID: mdl-22767926

ABSTRACT

The Nabro stratovolcano in Eritrea, northeastern Africa, erupted on 13 June 2011, injecting approximately 1.3 teragrams of sulfur dioxide (SO(2)) to altitudes of 9 to 14 kilometers in the upper troposphere, which resulted in a large aerosol enhancement in the stratosphere. The SO(2) was lofted into the lower stratosphere by deep convection and the circulation associated with the Asian summer monsoon while gradually converting to sulfate aerosol. This demonstrates that to affect climate, volcanic eruptions need not be strong enough to inject sulfur directly to the stratosphere.

SELECTION OF CITATIONS
SEARCH DETAIL
...