Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 25(34): 23069-23080, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37605928

ABSTRACT

Chemical disorder has a major impact on the characterization of the atomic-scale properties of highly complex chemical compounds, such as the properties of point defects. Due to the vast amount of possible atomic configurations, the study of such properties becomes intractable if treated with direct sampling. In this work, we propose an alternative approach, in which samples are selected based on the local atomic composition around the defect, and the defect formation energy is obtained as a function of this local composition with a reduced computational cost. We apply this approach to (U, Pu)O2 nuclear fuels. The formation-energy distribution is computed using machine-learning generative methods, and used to investigate the impact of chemical disorder and the range of influence of local composition on the defect properties. The predicted distributions are then used to calculate the concentration of thermal defects. This approach allows for the first time for the computation of the latter property with a physically meaningful exploration of the configuration space, and opens the way to a more efficient determination of physico-chemical properties in other chemically-disordered compounds such as high-entropy alloys.

2.
Article in English | MEDLINE | ID: mdl-32759486

ABSTRACT

The behaviour of stoichiometric U1-yPuyO2compounds used as nuclear fuel is relatively well understood. Conversely, the effects of stoichiometry deviation on fuel performance and fuel stability are intricate and poorly studied. In order to investigate what affect these have on the thermophysical properties of hypo-stoichiometric U1-yPuyO2-xmixed oxide fuel, new interaction parameters based on the many-body CRG (Cooper-Rushton-Grimes) potential formalism were optimized. The new potential has been fitted to match experimental lattice parameters of U0.7Pu0.3O1.99(O/M = 1.99) and U0.7Pu0.3O1.97(O/M = 1.97), where M represents the total amount of metallic cations, through a rigorous procedure combining classical molecular dynamic and classical molecular Monte Carlo simulation methods. This new potential provides an excellent description of the U1-yPuyO2-x system. Concerning lattice parameter, although fitted on only one Pu content (30%) and two stoichiometries (1.99 and 1.97), our potential allows good predictions compared to available experimental results as well as to available recommendations in wide ranges of O/M ratio, Pu content and temperature. For the U0.7Pu0.3O2-xhypo-stoichiometric system (30% Pu content and O/M ratio ranging from 1.94 to 2.00), some direct properties (lattice parameter and enthalpy) and some derivative properties (linear thermal expansion coefficient and specific heat) were systematically investigated from room temperature up to the expected melting temperatures and a good agreement with experiments is found. Moreover, our potential shows a good transferability to the plutonium sesquioxide Pu2O3system.

3.
J Chem Phys ; 150(1): 014703, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30621407

ABSTRACT

We report the calculation of the solid-liquid interface tension of the graphene-water interaction by using molecular simulations. Local profiles of the interfacial tension are given through the mechanical and thermodynamic definitions. The dependence of the interfacial tension on the graphene area is investigated by applying both reaction field and Ewald summation techniques. The structure of the interfacial region close to the graphene sheet is analyzed through the profiles of the density and hydrogen bond number and the orientation of the water molecules. We complete this study by plotting the profiles of the components of the pressure tensor calculated by the Ewald summation and reaction field methods. We also investigate the case of a reaction field version consisting in applying a damped shifted force in the case of the calculation of the pressure components.

4.
J Phys Chem A ; 115(39): 10729-37, 2011 Oct 06.
Article in English | MEDLINE | ID: mdl-21866905

ABSTRACT

We compute the Hugoniot curves of both neat triaminotrinitrobenzene (TATB) and its detonation products mixture using atomistic simulation tools. To compute the Hugoniot states, we adapted our sampling constraints in average (SCA) method (Maillet et al. Appl. Math. Res. eXpress 2009, 2008, abn004) to Monte Carlo simulations. For neat TATB, we show that the potential proposed by Rai (Rai et al. J. Chem. Phys. 2008, 129, 194510) is not accurate enough to predict the Hugoniot curve and requires some optimization of its parameters. Concerning the detonation products, thermodynamic properties at chemical equilibrium are computed using a specific reaction ensemble Monte Carlo (RxMC) method (Bourasseau et al. Phys. Chem. Chem. Phys. 2011, 13, 7060), taking into account the presence of carbon clusters in the fluid mixture. We show that this explicit description of the solid phase immersed in the fluid phase modifies the chemical equilibrium.


Subject(s)
Molecular Dynamics Simulation , Thermodynamics , Trinitrobenzenes/chemistry , Algorithms , Microscopy , Monte Carlo Method
5.
Phys Chem Chem Phys ; 13(15): 7060-70, 2011 Apr 21.
Article in English | MEDLINE | ID: mdl-21394373

ABSTRACT

This paper presents a new method to obtain chemical equilibrium properties of detonation products mixtures including a solid carbon phase. In this work, the solid phase is modelled through a mesoparticle immersed in the fluid, such that the heterogeneous character of the mixture is explicitly taken into account. Inner properties of the clusters are taken from an equation of state obtained in a previous work, and interaction potential between the nanocluster and the fluid particles is derived from all-atoms simulations using the LCBOPII potential (Long range Carbon Bond Order Potential II). It appears that differences in chemical equilibrium results obtained with this method and the "composite ensemble method" (A. Hervouet et al., J. Phys. Chem. B, 2008, 112.), where fluid and solid phases are considered as non-interacting, are not significant, underlining the fact that considering the inhomogeneity of such system is crucial.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(2 Pt 1): 021135, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19792105

ABSTRACT

We present or recall several equilibrium methods that allow one to compute isentropic processes, either during the compression or the release of the material. These methods are applied to compute the isentropic release of a shocked monoatomic liquid at high pressure and temperature. Moreover, equilibrium results of isentropic release are compared to the direct nonequilibrium simulation of the same process. We show that due to the viscosity of the liquid but also to nonequilibrium effects, the release of the system is not strictly isentropic.

7.
J Chem Phys ; 131(8): 084107, 2009 Aug 28.
Article in English | MEDLINE | ID: mdl-19725608

ABSTRACT

Thermodynamic and chemical properties of simple fluids N(2), CO(2), and H(2)O and their binary and ternary mixtures have been studied using density functional theory simulations in a high pressure and high temperature regime. We show that N(2) and binary mixtures with N(2) follow an ideal behavior over a large temperature and pressure range. On the contrary, the water molecule is observed to dissociate as either pressure or temperature increases. Dramatic consequences are observed when water is mixed with carbon dioxide at extreme conditions. Indeed, a new molecule is formed, CO(3)H(2), and the thermodynamic behavior of the mixture strongly deviates from ideality. Chemistry occurring at extreme conditions is then discussed in the context of detonation product modeling.

8.
J Hazard Mater ; 166(2-3): 1120-6, 2009 Jul 30.
Article in English | MEDLINE | ID: mdl-19217711

ABSTRACT

An approach is proposed to obtain the equation of state of unreactive shocked liquid nitromethane. Unlike previous major works, this equation of state is not based on extended integration schemes [P.C. Lysne, D.R. Hardesty, Fundamental equation of state of liquid nitromethane to 100 kbar, J. Chem. Phys. 59 (1973) 6512]. It does not follow the way proposed by Winey et al. [J.M. Winey, G.E. Duvall, M.D. Knudson, Y.M. Gupta, Equation of state and temperature measurements for shocked nitromethane, J. Chem. Phys. 113 (2000) 7492] where the specific heat C(v), the isothermal bulk modulus B(T) and the coefficient of thermal pressure (deltaP/deltaT)(v) are modeled as functions of temperature and volume using experimental data. In this work, we compute the complete equation of state by microscopic calculations. Indeed, by means of Monte Carlo molecular simulations, we have proposed a new force field for nitromethane that lead to a good description of shock properties [N. Desbiens, E. Bourasseau, J.-B. Maillet, Potential optimization for the calculation of shocked liquid nitromethane properties, Mol. Sim. 33 (2007) 1061; A. Hervouët, N. Desbiens, E. Bourasseau, J.-B. Maillet, Microscopic approaches to liquid nitromethane detonation properties, J. Phys. Chem. B 112 (2008) 5070]. Particularly, it has been shown that shock temperatures and second shock temperatures are accurately reproduced which is significative of the quality of the potential. Here, thermodynamic derivative properties are computed: specific heats, Grüneisen parameter, sound velocity among others, along the Hugoniot curve. This work constitutes to our knowledge the first determination of the equation of state of an unreactive shocked explosive by molecular simulations.


Subject(s)
Explosive Agents/chemistry , Methane/analogs & derivatives , Nitroparaffins/chemistry , Thermodynamics , Computer Simulation , Materials Testing/methods , Methane/chemistry , Monte Carlo Method , Structure-Activity Relationship , Temperature
9.
J Phys Chem B ; 112(32): 9853-63, 2008 Aug 14.
Article in English | MEDLINE | ID: mdl-18646801

ABSTRACT

An anisotropic united-atom (AUA4) intermolecular potential has been derived for the family of alkanols by first optimizing a set of charges to reproduce the electrostatic potential of the isolated molecules of methanol and ethanol and then by adjusting the parameters of the OH group to fit selected equilibrium properties. In particular, the proposed potential includes additional extra-atomic charges in order to improve the matching to the electrostatic field. Gibbs ensemble Monte Carlo simulations were performed to determine the phase equilibria, while the critical region was explored by means of grand canonical Monte Carlo simulations combined with histogram reweighting techniques. In order to increase the transferability of the model, only the parameters of the Lennard-Jones OH group have been fitted, the parameters of the other AUA groups are taken from previous works. Nevertheless, a good level of agreement was obtained for all compounds considered in this work. In particular, excellent results were obtained for the Henry constants calculation of different gases in alkanols.


Subject(s)
Alcohols/chemistry , Anisotropy , Monte Carlo Method , Static Electricity , Thermodynamics
10.
J Phys Chem B ; 112(16): 5070-8, 2008 Apr 24.
Article in English | MEDLINE | ID: mdl-18376884

ABSTRACT

In this paper, thermodynamic and chemical properties of nitromethane are investigated using microscopic simulations. The Hugoniot curve of the inert explosive is computed using Monte Carlo simulations with a modified version of the adaptative Erpenbeck equation of state and a recently developed intermolecular potential. Molecular dynamic simulations of nitromethane decomposition have been performed using a reactive potential, allowing the calculation of kinetic rate constants and activation energies. Finally, the Crussard curve of detonation products as well as thermodynamic properties at the Chapman-Jouguet (CJ) point are computed using reactive ensemble Monte Carlo simulations. Results are in good agreement with both thermochemical calculations and experimental measurements.

11.
J Phys Chem B ; 112(49): 15783-92, 2008 Dec 11.
Article in English | MEDLINE | ID: mdl-19367990

ABSTRACT

The thermodynamic behavior of the carbon dioxide + nitrogen dioxide (CO2 + NO2) mixture was investigated using a Monte Carlo molecular simulation approach. This system is a particularly challenging one because nitrogen dioxide exists as a mixture of monomers (NO2) and dimers (N2O4) under certain pressure and temperature conditions. The chemical equilibrium between N2O4 and 2NO2 and the vapor-liquid equilibrium of CO2 + NO2/N2O4 mixtures were simulated using simultaneously the reaction ensemble and the Gibbs ensemble Monte Carlo (RxMC and GEMC) methods. Rigid all atoms molecular potentials bearing point charges were proposed to model both NO2 and N2O4 species. Liquid-vapor coexistence properties of the reacting NO2/N2O4 system were first investigated. The calculated vapor pressures and coexisting densities were compared to experimental values, leading to an average deviation of 10% for vapor pressures and 6% for liquid densities. The critical region was also addressed successfully using the subcritical Monte Carlo simulation results and some appropriate scaling laws. Predictions of CO2 + NO2/N2O4 phase diagrams at 300, 313, and 330 K were then proposed. Derivative properties calculations were also performed in the reaction ensemble at constant pressure and temperature for both NO2/N2O4 and CO2 + NO2/N2O4 systems. The calculated heat capacities show a maximum in the temperature range where N2O4 dissociation occurs, in agreement with available experimental data.

12.
J Chem Phys ; 127(8): 084513, 2007 Aug 28.
Article in English | MEDLINE | ID: mdl-17764275

ABSTRACT

In this work, we used simultaneously the reaction ensemble Monte Carlo (ReMC) method and the adaptive Erpenbeck equation of state (AE-EOS) method to directly calculate the thermodynamic and chemical equilibria of mixtures of detonation products on the Hugoniot curve. The ReMC method [W. R. Smith and B. Triska, J. Chem. Phys. 100, 3019 (1994)] allows us to reach the chemical equilibrium of a reacting mixture, and the AE-EOS method [J. J. Erpenbeck, Phys. Rev. A 46, 6406 (1992)] constrains the system to satisfy the Hugoniot relation. Once the Hugoniot curve of the detonation product mixture is established, the Chapman-Jouguet (CJ) state of the explosive can be determined. A NPT simulation at P(CJ) and T(CJ) is then performed in order to calculate direct thermodynamic properties and the following derivative properties of the system using a fluctuation method: calorific capacities, sound velocity, and Gruneisen coefficient. As the chemical composition fluctuates, and the number of particles is not necessarily constant in this ensemble, a fluctuation formula has been developed to take into account the fluctuations of mole number and composition. This type of calculation has been applied to several usual energetic materials: nitromethane, tetranitromethane, hexanitroethane, PETN, and RDX.

SELECTION OF CITATIONS
SEARCH DETAIL
...