Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 46(19): 4972-4975, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34598246

ABSTRACT

Frequency combs play a crucial supporting role for optical clocks by allowing coherent frequency division of their output signals into the electronic domain. This task requires stabilization of the comb's offset frequency and of an optical comb mode to the clock laser. However, the two actuators used to control these quantities often influence both degrees of freedom simultaneously. This non-orthogonality leads to artificial limits to the control bandwidth and unwanted noise in the comb. Here, we orthogonalize the two feedback loops with a linear combination of the measured signals in a field-programmable gate array. We demonstrate this idea using a fiber frequency comb stabilized to a clock laser at 259 THz, half the frequency of the 1S0→3P0 Yb transition. The decrease in coupling between the loops reduces the comb's optical phase noise by 20 dB. This approach could improve the performance of any comb stabilized to any optical frequency standard.

2.
Opt Lett ; 45(15): 4196-4199, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32735257

ABSTRACT

We present a simple yet powerful technique to measure and stabilize the relative frequency noise between two lasers emitting at vastly different wavelengths. The noise of each laser is extracted simultaneously by a frequency discriminator built around an unstabilized Mach-Zehnder fiber interferometer. Our protocol ensures that the instability of the interferometer is canceled and yields a direct measure of the relative noise between the lasers. As a demonstration, we measure the noise of a 895 nm diode laser against a reference laser located hundreds of nm away at 1561 nm. We also demonstrate the ability to stabilize the two lasers with a control bandwidth of 100 kHz using a Red Pitaya and reach a sensitivity of 1Hz2/Hz limited by detector noise. We independently verify the performance using a commercial frequency comb. This approach stands as a simple and cheap alternative to frequency combs to transport frequency stability across large spectral intervals or to characterize the noise of arbitrary color sources.

3.
Appl Opt ; 59(7): B35-B38, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32225693

ABSTRACT

The phase information provided by the beat note between frequency combs and two continuous-wave lasers is used to extrapolate the phase evolution of comb modes found in a spectral region obtained via nonlinear broadening. This thereafter enables using interferogram self-correction to fully retrieve the coherence of a dual-comb beat note between two independent fiber lasers. This approach allows the $ f - 2f $f-2f self-referencing of both combs, which is a significant simplification. Broadband near-infrared methane spectroscopy has been conducted to demonstrate the simplified system's preserved performance.

4.
Opt Express ; 27(23): 33737-33744, 2019 Nov 11.
Article in English | MEDLINE | ID: mdl-31878435

ABSTRACT

A guided-wave chip laser operating in a single longitudinal mode at 2860 nm is presented. The cavity was set in the Littman-Metcalf configuration to achieve single-frequency operation with a side-mode suppression ratio above 33 dB. The chip laser's 2 MHz linewidth on a 10 ms scale was found to be limited by mechanical fluctuations, but its Lorentzian contribution was estimated to be lower than 1 Hz using a heterodyne technique. This demonstration incorporates a high coherence source with the simplicity provided by the compactness of chip lasers.

5.
Rev Sci Instrum ; 89(9): 093103, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30278726

ABSTRACT

This paper presents an open and flexible digital phase-locked loop optimized for laser stabilization systems. It is implemented on a cheap and easily accessible FPGA-based digital electronics platform (Red Pitaya) running a customizable open-source firmware. A PC-based software interface allows controlling the platform and optimizing the loop parameters remotely. Several tools are included to allow measurement of quantities of interest smoothly and rapidly. To demonstrate the platform's capabilities, we built a fiber noise canceller over a 400 m fiber link. Noise cancellation was achieved over a 30 kHz bandwidth, a value limited mainly by the delays introduced by the actuator and by the round-trip propagation over the fiber link. We measured a total latency of 565 ns for the platform itself, limiting the theoretically achievable control bandwidth to approximately 225 kHz.

SELECTION OF CITATIONS
SEARCH DETAIL
...